Расположение

Москва, ул.Гамалеи, д.15

м. Щукинская, авт/марш. №100 и №681
до ост. "Клиническая больница №86"

Пристройка к поликлинике 1 этаж
Отделение лучевой диагностики

Эл. почта:
[email protected]

 
  • Под контролем
    Под контролем

    Федерального
    медико-биологического
    агентства
  • Профессиональные снимки
    Профессиональные снимки

    на современном томографе
  • Удобное расположение
    Удобное расположение

    рядом с метро Щукинская
  • МРТ коленного сустава 4000 руб
    МРТ коленного сустава 4500 руб.
  • Предварительная запись
    Предварительная запись,
    что исключает ожидание в очереди
  • Возможность получения заключения на CD
    Возможность получения
    результатов на CD

Записаться
на приём

+7 (495) 942-38-23 (МРТ коленного сустава, денситометрия)

+7 (903) 545-45-60 (МРТ остальных зон)

+7 (903) 545-45-65 (КТ)

С 9.00 до 15.00

По рабочим дням

 


 

Диффузионно тензорная мрт


Диффузионная МРТ — Википедия

Материал из Википедии — свободной энциклопедии

Диффузионная МРТ позволяет реконструировать нервные пути в головном мозге (трактография)

Диффузионная спектральная томография — неинвазивная методика медицинской визуализации, применяемая в магнитно-резонансной томографии, для количественного измерения диффузии молекул воды в биологических тканях. Получила широкое применение для построения трёхмерных моделей головного мозга и мышечных тканей.[1] Диффузия в биологических тканях ограничена множеством препятствий, такими как стенки клеток и нейронные тракты, а характеристики диффузии в тканях изменяются при некоторых заболеваниях центральной нервной системы. Измерив тензор диффузии, можно рассчитать направление максимальной диффузии и тем самым получить информацию о геометрическом строении тканей человека, например, направлении крупных пучков нервных волокон. Как и классическая МРТ, диффузионно-взвешенная визуализация является неинвазивной процедурой: поскольку контраст изображения достигается исключительно при помощи градиента магнитного поля, то не требуется ни инъекции контрастного вещества, ни использования ионизирующего излучения.

Диффузионная, или диффузионно-тензорная магнито-резонансная томография является наиболее широко используемым вариантом МРТ, которым определяется направление диффузии. Каждый пространственный элемент (воксел) определяется более чем одним числовым значением, по томограммам в градациях серого цвета вычисляется тензор (в частности, матрица размером 3×3), описывающий диффузию в трёхмерном изображении. Такие измерения занимают значительно больше времени, чем обычная МРТ, и генерируют большие объёмы данных, которые могут быть обработаны только рентгенологом с помощью различных методов визуализации.

Получение изображения диффузии осуществили в 1980-х годах, и сейчас оно поддерживается всеми современными МРТ-установками, применяясь, в частности, в клинической практике для диагностики инсульта, потому что пострадавшие области мозга на ней чётко видны до того, как их можно рассмотреть при классической томографии. Диффузионная томография была разработана в середине 1990-х годов. Некоторые клиники используют её для хирургических и плановых обследований при радиотерапии. Кроме того, диффузионно-тензорная МРТ используется в медицинских исследованиях для изучения заболеваний, связанных с изменением белого вещества (происходит при болезни Альцгеймера или рассеянном склерозе). Дальнейшее развитие направления диффузионной МРТ является текущим предметом исследований, например, в рамках Human Connectome Projectruen.

ru.wikipedia.org

Диффузионная тензорная магнитно-резонансная томография и трактография Текст научной статьи по специальности «Медицинские технологии»

Диффузионная тензорная магнитно-резонансная томография и трактография

И.Н. Пронин, Л.М. Фадеева, Н.Е. Захарова, М.Б. Долгушин, А.Е. Подопригора, В.Н. Корниенко

НИИ нейрохирургии им. Н.Н. Бурденко РАМН, Москва

Целью данной работы стало рассмотрение метода визуализации трактов белого вещества головного мозга с помощью диффузионной тензорной магнитно-резонансной томографии (ДТМРТ) и диффузионной тензорной трактографии (ДТТ) и оценка возможности применения новой методики в нейрохирургической клинике. Представлены краткий обзор основных физических принципов, лежащих в основе ДТ МРТ и трактографии, а также примеры использования ДТ МРТ для определения топографии проводящих путей и степени воздействия на них опухоли головного мозга, что особенно важно на дооперационном этапе планирования хирургического вмешательства.

Ключевые слова: диффузия, диффузионно-тензорная магнитно-резонансная томография, трактография, проводящие пути головного мозга, опухоли ЦНС.

Введение

Новая методика - МР-трактография - позволяет неинвазивно «увидеть» проводящие пути головного мозга. Несмотря на существующие технические проблемы, первые результаты в приложении к задачам нейрохирургии оказались многообещающими [5]. С помощью диффузионной тензорной МРТ стало возможным планировать операционный доступ и объем оперативного удаления внутримоз-говых опухолей с учетом расположения проводящих путей, их заинтересованности в патологическом процессе (смещение/деформация или инвазия и повреждение) с целью максимально радикального удаления опухоли с минимальными послеоперационными повреждениями [1, 9, 13, 17]. Исследования последних лет наметили пути использования разных вычислительных алгоритмов построения нервных проводящих путей по данным тензорной МРТ.

Целью работы стало рассмотрение принципов, лежащих в основе ДТ МРТ и построения диффузионных карт (на основе среднего коэффициента диффузии и частичной анизотропии), а также демонстрация возможностей метода с построением трактографических карт в нейрохирургической клинике.

Основные физические принципы___________________________

В основе диффузионных МР-исследований лежит эхо-пла-нарная импульсная последовательность (ИП DW-EPI) [1-6, 11-13]. Она позволяет регистрировать данные, необходимые для построения изображения одного среза головного мозга, за 0,1 с, а получение временной серии срезов (до 500 последовательных изображений) занимает 2-3 мин.

DW-EPI отличается от эхо-планарной импульсной последовательности «спиновое эхо» (SE EPI) наличием добавочной пары диффузионных градиентов (ДГ), которые позволяют оценить микроскопические изменения фазы МР-

сигнала, возникающие за счет хаотического теплового движения протонов вместе с молекулами воды [15]. Связанные с диффузионным движением изменения фазы приводят к снижению МР-сигнала. Получаемые с помощью ИП DW-EPI изображения называют диффузионно-взвешенными (ДВИ), хотя в действительности интенсивность МР-сигна-ла на ДВИ зависит одновременно и от Т2 скорости релаксации, и от скорости диффузии в тканях мозга. Степень взвешенности по скорости диффузии задается значением параметра протокола импульсной последовательности - b, получившего название «фактор диффузии», величина которого зависит от длительности ДГ и времени задержки между ними:

b=y2*G2*5*(A-5/3) (1)

где у - гиромагнитное отношение, G - амплитуда диффузионного градиента, 5 - длительность каждого диффузионного градиента, А - интервал между двумя диффузионными градиентами. Единицей измерения b является с/мм2.

Для устранения влияния Т2 ткани на интенсивность МР-сигнала на изображении вычисляют параметрические диффузионные карты, на которых зависимость интенсивности сигнала от Т2 ткани исключена. Для этого в диффузионной МРТ проводят измерения два раза. Первый раз получают изображение, взвешенное только по Т2, для чего задают b=0 с/мм2; обозначим интенсивность МР-сигнала на этом изображении А(0). Второй раз измерения проводят при отличном от нуля b-факторе (при исследованиях головного мозга обычно выбирают b=1000 с/мм2) и задают направление, вдоль которого измеряется изменение фазы сигнала за счет диффузионного движения. Интенсивность сигнала на этом изображении обозначим A(b). Ослабление МР-сигнала за счет диффузионного движения (D) рассчитывают по формуле:

In (-щ~)= -b D (2)

Диффузионная тензорная МРТ и трактография

где А(0) - амплитуда эхо-сигнала в отсутствие диффузионных градиентов, зависящая только от Т2 ткани, A(b) -амплитуда эхо-сигнала, полученная при действии диффузионных градиентов и зависящая и от Т2, и от скорости диффузионного движения вдоль направления приложения ДГ. D - коэффициент диффузии вдоль направления действия ДГ.

Для величины, которая получается при измерении коэффициента диффузии воды в сложной среде в направлении действия ДГ методом ЯМР, Таннер в 1970 г. ввел понятие так называемого «действительного (измеряемого, или apparent) коэффициента диффузии» - ADC (русский эквивалент ИКД). Это связано с тем, что биологические, живые ткани не являются изотропными средами для движения молекул воды, которое происходит как внутри клетки, так и в межклеточном пространстве: клеточные мембраны и структуры ограничивают движение молекул воды, оставляя им некоторую свободу для лавирования между препятствиями при перемещении. Зависимость диффузионной способности молекул в биологической среде от направления называется анизотропией диффузии [1, 8, 16, 17]. Для описания свойств диффузии, которые изменяются со сменой направления, используется математика тензоров. Диффузионные свойства молекул воды в веществе полностью описываются девятью значениями (Dxx, Dxy, Dxz ....) переменной Dij с индексами i и j, которые заменяют одну из букв x, y, z. Набор из 9 чисел Dij называется тензором второго порядка (по числу индексов). Тензор второго порядка часто записывают в виде таблицы:

Dxx Dxy Dxz

D = Dyx Dyy Dyz (3)

Dzx Dzy Dzz

Тензор диффузии симметричен, т.е. Dxy = Dyx и т.п. для любой пары индексов. Это свойство отражает физические свойства реальной среды, а именно: диффузионные свойства не изменятся, если начальную и конечную точки траектории молекулы поменять местами. Благодаря симметрии тензора диффузии для характеристики диффузионных свойств молекул воды (протонов) в ткани достаточно шести коэффициентов тензора - трех диагональных и трех недиагональных. Геометрически диффузионное движение в сложной среде можно описать некой областью, в которой может происходить движение молекул. Эта область в простейшем случае свободного, неограниченного движения имеет форму шара, при наличии слоев, препятствующих движению молекул воды, она принимает форму диска, при движении молекул в узком канале движение ограничено длинным узким эллипсоидом «игольчатой» формы (рис. 1). Шесть коэффициентов тензора диффузии точно определяют форму эллипсоида диффузии, его размеры и ориента-

А Б В

(Ш • §

рис. 1: Типы диффузионного движения: А - свободная диффузия, Б - равномерно ограниченная (изотропия), В - неравномерно ограниченная (анизотропия диффузии)

цию в пространстве. Изотропия диффузии означает, что диффузионное движение молекул не зависит от ориентации среды и за время наблюдения молекула не выйдет за пределы сферы радиуса г :

г = (Бхх+Буу+Бя)/3 (4)

Анизотропия диффузии предполагает, что смещение блуждающей частицы зависит от ориентации среды и за время наблюдения молекула будет находиться внутри так называемого «эллипсоида диффузии». Для анизотропной среды всегда можно повернуть систему координат так, чтобы ее оси (х-у-2) совпали с направлением главных осей эллипсоида диффузии (х’-у’-2’) (рис. 2). В новой системе координат все недиагональные элементы тензора диффузии обратятся в ноль, и тензор диффузии примет вид:

Хх 0 0

Б = 0 Ху 0 (5)

0 0 Х

где Хх, Ху, Хг - это главные диффузионные коэффициенты (или собственные значения диффузионного тензора), соответственно, вдоль трех взаимно перпендикулярных главных осей Х’У^’. Обычно собственные значения нумеруют в порядке возрастания по величине, т.е. Хх>Ху>Хг.

рис. 2: Ориентация, размер и форма эллипсоида диффузии в вокселе, построенном по измерениям коэффициента диффузии (ИКД), проведенным при действии диффузионных градиентов по шести направлениям. Х1, Х2, Хз - собственные значения диффузионного тензора, а1, а2, а3 - собственный вектор диффузионного тензора

Геометрически эти три числа представляют собой длины отрезков, образованных точками пересечения эллипсоида диффузии с координатными осями. Три собственных значения диффузионного тензора задают собственный вектор тензора диффузии (рис. 2) и полностью определяют размер, форму и ориентацию эллипсоида диффузии, соответствующего тензору диффузии Б. При Хх >>Ху, Хг эллипсоид имеет «игольчатую» форму, он вытянут вдоль оси х, при Хх «Ху, Хг ^0 эллипсоид будет сплющен (как блин) в направлении 2.

Сумма диагональных компонент любого тензора (эта сумма называется следом тензора) всегда остается постоянной:

Бхх + Dxy + Dxz = след (Б) =еот1 (6)

Это свойство тензора диффузии использовано при вычислении параметрической карты по средней диффузионной способности - Ьау, численно равной следу диффузионного тензора:

1/з След (Б) = 1/з (Dxx+Dyy+Dzz) = 1/з (Х1+Х2 +Хз) = Dav (7)

Ориентация эллипсоида диффузии (степень анизотропии) определяется разбросом величин собственных значений, или дисперсией, и ее оценивают с помощью коэффициента несферичности, или анизотропии. Чаще всего оценивают коэффициент частичной анизотропии (ЕЛ) [4, 14, 17]:

1 (Х1-<Х>) 2+ (Х-<Х>)2+(Хз-<Х>) 2

/з След ^2)=-----------з-------------= дисперсия (Х) = ЕЛ (8)

Кроме того, иногда используют и другие метрики анизотропии, например, объемное отношение (УЯ) или индекс анизотропии (Л1):

УК = Уэллипс/Усферы = 27 (Х1 Х2 Хз)/(Х1+Х2 +Хз) (9)

Л1=1 - т (10)

где Уэллипс - объем эллипсоида диффузии, Усферы - объем сферы при изотропной диффузии со средним коэффициентом Б зу.

Метод визуализации диффузионного движения___________________

Для вычисления среднего коэффициента диффузии, коэффициента анизотропии и координат собственного вектора диффузии для каждого воксела исследуемого головного мозга измеряют ИКД минимум для 6 направлений ДГ (неколлинеарных и некопланарных) - д^. Направление д; задается схемой включения диффузионных градиентов Ох, ву, вг и их амплитудой. Например:

1 0 0 1 2 2

ч1=0 ч2=1 д3=0 д4 =1/^2*0 Ч5=1/^5*0 д6 = 1^5*0, (11) 0 0 1 1 0 -1

которые представляют собой линейные (по направлению q;) диффузионные коэффициенты Di по формуле (2). Коэффициенты тензора диффузии Dij связаны со значениями линейных диффузионных коэффициентов Di и направлением градиента qi по формуле:

Dj=qjTxDxq (12)

где q;T - транспонированный вектор qi, D - тензор диффузии (уравнение 6).

Решая систему линейных уравнений (12), находят значения коэффициентов тензора диффузии D для каждого воксела. Дальнейшая обработка данных состоит в нахождении собственных значений и собственных векторов тензора диффузии для каждого воксела. Таким образом, наиболее важными количественными параметрами, которые дает ДТ МРТ, являются три собственных значения тензора диффузии, средний коэффициент диффузии и коэффициент анизотропии [1, 14, 17].

В тензорной МРТ все действующие градиенты импульсной последовательности (включая адресные) дают дополнительное взвешивание по диффузии. Для коррекции вклада адресных градиентов, измерения линейных коэффициентов диффузии проводят не по шести, а по 15, 25 и более направлениям. Время регистрации и обработки данных при этом увеличивается, но повышается точность вычисления компонент диффузионного тензора, что важно для трактографии

- метода визуализации хода нервных волокон.

Визуализация объемных тензорных полей осуществляется двумя методами: «классическим» методом (окрашиванием определенным цветом пикселов в зависимости от ориентации собственного вектора: красным - по х, зеленым - по у,

Л

%

рис. 3: Визуализация объемных тензорных полей окрашиванием определенным цветом пикселов в зависимости от ориентации собственного вектора (красным - по х, зеленым - по у, синим - по 2)

А - значение частичной анизотропии диффузии кодируется яркостью; Б - построение хода нервного волокна («нити») определяют, анализируя ориентацию эллипсоидов диффузии в соседних вокселах, начиная из заданной «исходной» точки; В - тракты волокон формируются в виде «нитей». Каждую «нить» можно строить, задавая либо «исходную» и «конечную» области, либо от исходной точки до естественного окончания наиболее вероятного пути.

А

Б

синим - по z, а частичная анизотропия диффузии кодируется яркостью) и текстурным интегрированным методом -тракты волокон формируются в виде линий. Такой метод визуализации хода нервных волокон называется однотензорной трактографией (single tensor tractography).

Построение хода нервного волокна («нити») определяют, анализируя ориентацию эллипсоидов диффузии в соседних вокселах, начиная из заданной «исходной» точки. Каждую «нить» можно строить, задавая либо «исходную» и «конечную» области, либо от исходной точки до естественного окончания наиболее вероятного пути (рис. 3).

Существуют методы мультитензорной трактографии. В этом случае используют 15, 35, 41 и более направлений для измерения ДВИ. В работах D.S. Tuch (2004) и K. Yamada (2007) по серии ДВИ, полученной для 35 направлений, определяют ориентацию двух и более эллипсоидов диффузии (по 6 направлениям для каждого эллипсоида). В этом случае возможно скорректировать ход нервных волокон в местах пересечения и разветвления трактов, особенно крупного с мелким.

Для построения мелких, ответвляющихся от крупных, трактов используют сложные алгоритмы выделения хода нервных волокон, например, методы структурного моделирования, метод pfd [18], связные модели [17], метод интегральных преобразований и метод сферических гармоник [7]. Эти методы позволяют получить диффузионную тензорную МРТ высокого разрешения (HARDI).

Материал и метод__________________________________________

Исследования были проведены на МРТ 1.5 Тл (Exite, GE) с использованием импульсной последовательности ДВ SE EPI со следующими параметрами:

- TR/TE, мс

- Направления/повторы

- Матрица

- Толщина среза/зазор, мм

- Поле обзора, см/ размер воксела (мм3)

8000/93.2

6/4

256х256

5/1,5

24/1,9х1,9х5

- Продолжительность исследования 4 мин

- 27 срезов, всего 189 изображений.

Использованы измерения на основе применения шести направлений диффузионного градиента. Затем все первичные данные переправлялись на рабочую станцию Adwanta-ge 4.3, оснащенную коммерческим специализированным программным обеспечением для построения трактогра-фии. Проводилось построение как отдельных проводящих путей, так и комплексной картины трактов белого вещества головного мозга в целом.

Обработаны данные 113 пациентов с различными поражениями головного мозга в возрасте от 3 до 78 лет, из них у 92 выявлены опухоли головного мозга. Гистологически это были диффузнорастущие глиомы - 37 больных, отграниченные глиомы (пилоциторные астроцитомы, плеоморф-ноклеточные астроциотомы) - 16, метастазы - 19, геман-гиобластомы - 3, внемозговые опухоли - 17. У 14 пациентов трактография выполнена в различные сроки после черепно-мозговой травмы, а в 7 случаях у больных рассеянным склерозом.

Клиническое применение МР-трактографии_________________

Количественные параметры, которые можно получить при использовании диффузионной тензорной МРТ, уже нашли свое применения в оценке многих заболеваний ЦНС [1-6, 15, 17]. В частности, при метаболических поражениях в детском возрасте, при рассеянном склерозе, приобретенном иммунодефиците. Измерения анизотропии диффузии проводились при изучении сосудистой энцефалопатии, при лей-коареозе и возрастных изменениях, у больных с черепномозговой травмой, в психиатрии и при нейродегенеративных заболеваниях. Есть работы, посвященные исследованию объемных поражений головного и спинного мозга. Но их пока еще очень мало в мировой и нет в российской печати.

Основной интерес в представляемой работе сфокусирован на изучении возможностей данной методики в нейрохирургической клинике: определение топографии проводящих путей, степени воздействия опухоли, возможности совмещение с фМРТ в будущем, поддержка радиохирургии и др.

рис. 4: Структурные карты диффузии

А - изображения на уровне ствола мозга; Б -на уровне боковых желудочков. Цветом закодированы направления проводящих путей (красным - комиссуральные, зеленым -ассоциативные, синим - проекционные).

■ W I А

■ ■ г •.*

Ч * *

-л ^ ^

Том 2. №1 2008 Проводящие пути белого вещества

Применение МР-трактографии в планировании хирургических операций_____________________

Тракты белого вещества головного мозга принято делить на три основные категории:

- Комиссуральные - соединяют большие полушария.

- Ассоциативные - соединяют корковые структуры в полушарии.

- Проекционные - соединяют корковые, подкорковые и стволовые структуры.

Для изучения топографии проводящих путей головного мозга мы исследовали 5 здоровых добровольцев. Тензорная МРТ выполнялась с использованием 6 градиентов в аксиальной, фронтальной и сагиттальной проекциях. Как предварительный этап построения трактов мы реконструировали структурные цветовые карты на основе частичной анизотропии для каждого среза. Так, на аксиальной цветовой карте каждый цвет «отвечает» за свое направление: красный - справа налево, зеленый - спереди назад, синий -сверху вниз. Особенно четко ориентация пучков белого вещества выявляется в проекции ствола мозга (рис. 4). Затем проводилось построение отдельных проводящих путей в 3-мерном объеме (рис. 5) и как завершающий этап

- выстраивался весь объем трактов белого вещества мозга.

Сохранение витальных церебральных функций при максимальном объеме резекции интракраниального объемного образования является главной задачей любого нейрохирургического вмешательства. Поэтому знание взаимоотношений между опухолевым поражением мозга и различными структурными и функциональными зонами мозга оказывает огромную роль при формировании мнения хирурга о предстоящей операции, подходе к новообразованию, объему резекции и т.д. Особенно важно это при расположении опухоли в зонах, где предположительно (исходя из анатомии) могут находиться, например, основные проводящие пути мозга - кортико-спинальный тракт, зрительная радиация, нижний и верхний продольные пучки и др. Однако в реальных условиях роста новообразования все привычные анатомические ориентиры и детали обычно или исчезают, или смещаются. Стандартные МРТ изображения, даже высокого разрешения, не дают этой информации. В этих условиях возможности МР-трактографии открывают новые горизонты в оценке состояния проводящих путей головного, а в последнее время и спинного мозга. К сожалению, стремление нейрохирурга максимально удалить доступную для резекции опухоль не всегда оправдано, если в учет не берется состояние проводящих путей, расположенных в зоне опухоли. При новообразованиях парацен-тральной зоны (пре- и постцентральная извилины) - чаще

рис. 5: 3-мерные трактографические карты

Изображение проводящих путей белого вещества мозга, изображенные в виде «нитей», наложенные на Т2 изображение (А-Е).

всего это глиальные опухоли - клиническая картина заболевания, например, гемипарез, может быть обусловлена как поражением функциональной корковой зоны двигательного центра, так и поражением контрикоспинального тракта на отдалении от поверхности коры. И если для оценки коркового двигательного центра можно использовать интраоперационную электростимуляцию или данные функциональной МРТ, то состояние проводящих путей в глубине мозга возможно оценить в настоящее время пока лишь с использованием диффузионно-тензорной МРТ. Более того, МР-трактография позволяет высказать предположение не только о локализации интересующих пучков белого вещества мозга, но и оценить степень их повреждения, если опухоль инфильтрирует указанную область. А исходя из знаний о характере роста различных новообразований ЦНС, можно использовать данные МР-трактографии в предположительном высказывании о гистологической структуре опухоли. Хорошо известно, что в большинстве своем глиальные новообразования - это инфильтративно растущие опухоли, которые в ходе роста приводят к деструктивным изменениям в мозговом веществе и, следовательно, будут вызывать «повреждение» проводящих путей в зоне своего роста. Метастазы в головном мозге, наоборот, растут экспансивно, не инфильтрируя, а компремируя и смещая окружающие мозговые структуры. МР-трактография в этих условиях,

обнаруживая либо деструкцию, либо дислокацию, помогает поставить правильный диагноз еще на предоперационном этапе (рис. 6, 7).

При больших по размеру инфильтративных опухолях кон-векситальной локализции, при которых нет особых сложностей с точки зрения операционного доступа (если, конечно, они расположены на удалении от главных корковых анализаторов), основным вопросом является объем возможной резекции в глубинных отделах головного мозга, особенно если у пациента нет грубых неврологических нарушений. Хирургическое повреждение проекционных проводящих путей, например, пирамидного пути, может повлечь за собой выраженное углубление или появление пареза при, казалось бы, тотальном удалении опухоли и великолепно проведенном оперативном вмешательстве. Знание взаимоотношения проводящих путей и границ опухоли на сегодняшний день уже является неотъемлемой частью предоперационного планирования объема резекции во многих клиниках (рис. 8).

Как показывают и наши первые иследования, при медленном росте даже глиальной инфильтративной опухоли мозга при МР-трактографии можно обнаружить сочетание признаков деструкции в центральных отделах опухоли и дисло-

рис. 6: Глиобластома левой височной доли

А - Т1-взвешенная МР-томограмма с контрастным усилением демонстрирует больших размеров опухоль с неоднородным контрастированием. Б-Г - МР-трактография определяет деструкцию ассоциативных проводящих путей в зоне опухолевого роста. Кортикоспинальный тракт (Г) дислоцирован опухолью и проходит по медиальному ее контуру.

рис. 7: Солитарный метастаз в проекцию подкорковых образований справа

МР-томограмма в режиме Т1 с контрастным усилением определяет небольших размеров опухолевый узел в проекции зрительного бугра и заднего колена внутренней капсулы (А). МР-трактография демонстрирует огибание проводящих путей вокруг метастаза.

кации прилежащих окружающих мозговых структур. Но в отличие от метастазов, эти опухоли имеют типичные для своей инфильтративной природы МРТ-проявления на стандартных изображениях, особенно при использовании внутривенного контрастного усиления (рис. 9). Высокую информативность МР-трактография показала в определении операционного доступа и объема оперативной резекции при опухолях, расположенных в височной доле мозга в области пересечения проводящих путей ^с. агсиаШБ), идущих от зоны Брока к зоне Вернике, или в проекции затылочно-теменно-височной области, где расположены пучки хорошо известной зрительной радиации (рис. 10).

Так как все внемозговые опухоли лишь компремируют и дислоцируют мозговое вещество в ходе своего роста, то очевидно что и при МР-трактографии проводящие пути белого вещества мозга претерпевают те же изменения. Более важно использование этого метода при базальной локализации опухолей на уровне ствола мозга, при глубинной локализации и атипичных рентгенологических проявлениях, требующих проведения дифференциальной диагностики с другими, в частности, инфильтративными поражениями мозга.

Заключение

Оценка эффективности нового метода построения проводящих путей головного мозга сегодня еще находится в стадии изучения и требует проведения дополнительных исследований и математического моделирования. Но уже сейчас можно с уверенностью сказать о том, что МР-трактография займет одно из важных мест в оценке изменений белого вещества головного мозга, выработке предоперационного планирования доступа, объема удаления интракраниальных объемных образований и возможной их последующей послеоперационной оценке. Кажутся особенно перспективными направления в использовании диффузионного тензора в изучении стволовых опухолей в их взаимосвязи с компактно расположенными в этой области проводящими путями, в построении 3-мерных моделей головного мозга с одновременным наложением на них данных функциональной МРТ и трактографии, а также использование топографии проводящих путей для проведения более точно сфокусированной лучевой терапии и радиохирургии.

рис. 8: Глиобластома левой заднелобно-теменной области

МРТ в режиме Т1 на фоне контрастного усиления выявляет больших размеров опухоль с периферическим характером контрастного усиления (А, Б). МР-трактография с постепенным построением кортикоспинального тракта (В), нижнего продольного пучка (Г) и «комплекса» проводящих путей определяет локальную деструкцию в зоне опухоли и ее отношение к неповрежденным кортикоспинальному тракту и нижнему продольному пучку .

рис. 10: Астроцитома правой затылочной области

МРТ в режиме Т1 с контрастированием определяет новообразование кистозного строения с периферическим контрастным усилением. Только МР-трактография была способна демонстрировать расположение пучков зрительной радиации, огибающей опухоль по латеральному контуру.

Список литературы

1. Корниенко В.Н., Пронин И.Н., Голанов А.В. и др. Нейрорентгено-логическая диагностика первичных лимфом головного мозга. Mедицинская визуализация 2GG4; 1; б-15.

2. Пронин И.Н., Корниенко В.Н., Фадеева Л.М. и др. Диффузионновзвешенные изображения в исследовании опухолей головного мозга и перитуморального отека. Журн. Вопр. нейрохирургии 2GGG; З: 14-П.

3. Пронин И.Н., Корниенко В.Н., Подопригора А.Е. и др. Комплексная MP-диагностика абсцессов головного мозга. Журн. Вопр. нейрохирургии 2GG2; 1: У—11.

4. Curr H, Percell E. Effects of diffusion on free precession in nuclear magnetic resonance. Phys. Rev. 1954; 94: 630—638.

5. Chepuri N., Yen Yi-Fen, Burdette J. Diffusion Anisotropy in the Corpus Callosum. AJNR 2GG2; З: 803—808.

6. Conturo Thomas E. Tracking neuronal fiber pathways in the living human brains. Proc. Natl. Acad. Sci. USA 1999; 9б: 10422—10427.

У. Frank L.R. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Res. Med. 2002; 4У: 108З-99.

8. Le Bihan D., Breton E. Imagerie de diffusion in-vivo par resonance magnetique nucleaire. CR Acad. Sc. Paris 1985; З01, serie II: 1109-1112.

9. Le Bihan D., Turner R. Intravoxel incoherent motion imaging using spin echoes. Magn. Res. Med. 1991; 19: 221-22У.

10. Le Bihan D, van Zijl P. From the diffusion coefficient to the diffusion tensor. NMR Biomed. 2002; 15: 431-434.

11. Mori S., van Zijl P.C.M. Fiber tracking: principles and strategies. NMR Biomed. 2002; 15: 468-480.

12. Moseley M, Butts K, Yenary M. et al. Clinical aspects of DWI. NMR Biomed. 1995; 8: 387-396.

13. Mulkern R., Gudbjartsson H, Westin C. et al. Multicomponent apparent diffusion coefficients in human brain. NMR Biomed. 1999; 12: 51-62.

14. Pierpaoli C., Jezzard P., Basser P.J. et al. Diffusion tensor MR imaging of the human brain. Radiology 1996; 20: 637-648

15. Stejskal E.O., Tanner J.E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965; 42: 288-292.

16. Tanner J. Use of stimulated echo in NMR diffusion studies. I. Chem. Phys. 1970; 52: 2523-2526.

17. Tuch D.S. Q-ball imaging. Magn. Res. Med. 2004; 52: 1358-72.

18. Wedeen V.J., Hagmann P., Tseng W.Y. et al. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Res. Med. 2005; 54: 1377-86

19. Yamada K., Sakai K., Hoogenraad F.G.C. et al. Multitensor tracto-graphy enables better depiction of motor pathways: initial clinical experience using diffusion-weighted MR imaging with standard b-value. Am. J. Neuroradiol. 2007; 28: 1668-167.

Diffusion tensor imaging and diffusion tensor tractography

I.N. Pronin, L.M. Fadeeva, N.E. Zakharova, M.B. Dolgushin, A.E. Podoprigora, V.N. Kornienko

N.N. Burdenko Research Institute of Neurosurgery, Moscow Key words: diffusion, diffusion tensor MRI, tractography, brain pathways, tumors of the central nervous system.

The purpose of this work was to present the advanced imaging tools using diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) for yielding structural and functional information about white matter (WM) pathways in the brain. A brief review of the basic principles underlying DTI and examples of clinical applications of DTI and DTT in neurosurgery for

patients with brain tumors is presented. Knowledge of DTT patterns, when a cerebral neoplasms involves the WM tracts, becomes critically important when neurosurgeons use DTI in evaluation of the topography of WM and tumor for planning tumor resection.

cyberleninka.ru

ДИФФУЗИОННО-ТЕНЗОРНАЯ МАГНИТНО РЕЗОНАНСНАЯ ТОМОГРАФИЯ (ТРАКТОГРАФИЯ ГОЛОВНОГО МОЗГА) КАК МЕТОД ВИЗУАЛИЗАЦИИ ТРАКТОВ БЕЛОГО ВЕЩЕСТВА ГОЛОВНОГО МОЗГА

Трактография головного мозга – диагностический метод, основанный на диффузионно-взвешенной магнитно-резонансной томографии (ДВ МРТ), позволяющий визуализировать ориентацию и целостность проводящих путей головного мозга in vivo. Области клинического применения этого метода в настоящее время уточняются.

Диффузионно-тензорная МРТ оценивает диффузионные характеристики исследуемой среды, а также направленность диффузии воды (анизотропии), и таким образом, дает информацию о степени интегрированности трактов белого вещества. Диффузионная анизотропия неоднородна в разных областях белого вещества и отражает различие в миелинизации волокон, диаметре и их направленности. Патологические процессы, изменяющие микроструктуру белого вещества, такие, как дезорганизация и разобщение волокон или их разрыв, сочетающиеся с повреждением миелина, ретракцией нейронов, увеличением или уменьшением внеклеточного пространства, оказывают существенное влияние на показатели диффузии и анизотропии. ДТ МРТ позволяет реконструировать трехмерные изображения комиссуральных, ассоциативных и проекционных трактов, обеспечивающих нормальную функцию мозга.

ДВ МРТ – техника получения изображений головного мозга, основанная на измерении диффузии воды в каждом объемном элементе (вокселе) изображения. На его основании формируется диффузионная матрица, из которой можно получить 3 числовых значения и 3 вектора, описывающих силу и направление диффузии воды в выбранной точке. Вода диффундирует быстрее вдоль волокон проводящих путей белого вещества, поскольку мембраны аксонов выступают препятствием для ее диффузии в других направлениях. При патологических процессах, например, при ишемии, воспалении, нейродегенеративных заболеваниях, травме, происходит нарушение линейной организации проводящих путей. ДВ МРТ улавливает эту перемену направления диффузии, создавая изображения, позволяющие изучить изменения микроструктуры проводящих путей мозга in vivo. Большинство работ, исследующих микроструктуру белого вещества головного мозга при помощи ДВ МРТ, основано на построении двухмерных серошкальных карт с использованием показателей величины диффузии в каждом вокселе. Трактография – дополнение к стандартным методам ДВ МРТ, позволяющее получить более детальную информацию об ориентации и кривизне (угле наклона) проводящих путей белого вещества при прохождении через весь головной мозг. При этом для построения траектории диффузии воды по волокнам проводящих путей используется как матрица числовых значений, так и векторы диффузии воды. Траектории изображаются графически в виде пучка кривых. Кроме того, есть методы, позволяющие на основе диффузионной информации построить карты, в которых цветом обозначена ориентация волокон белого вещества. Как правило, при его повреждении повышается диффузия и изменяется направление движения молекул воды. Считается, что по таким изменениям диффузии можно выявить поражение аксонов, а также оценить выраженность демиелинизации, глиоза или других патологических процессов.

Трактографию проводят на МР-томографах с силой поля 1,5–3 Тл. Используется многоканальная (не менее 6 каналов) фазированная поверхностная катушка для головного мозга. Для ДВ МРТ применяют спин-эхо и эхо-планарную последовательность (single-shot spin-echo echo-planar imaging). Для коррекции двигательных артефактов используют эхо-навигатор. Применяется методика параллельной томографии (например, SENSE) с фактором 2–4. Количество срезов – 96. Они ориентированы перпендикулярно линии, соединяющей переднюю и заднюю спайки мозга. Толщина среза – 2,3 мм, промежуток между ними – 0, поле изображения – 220 мм, время повторения (TR) – 6,599–8,280 мс, время эхо (ТЕ) – 70 мс, количество усреднений – 2, коэффициент диффузии (Ь) – 600 с/мм2. Время исследования – около 9 минут.

Реконструкцию трактограмм проводят с использованием специального программного обеспечения. После получения МР-изображений исследователь, знакомый с анатомией и физиологией головного мозга, выделяет область интереса, в которой будет проводиться реконструкция трактограмм (например, кортикоспинальный тракт на аксиальных изображениях, мозолистое тело на сагиттальных). В результате получаются векторные карты, в которых направление диффузии кодируется цветом: чаще всего красным обозначается движение воды «вправо-влево» (х-элементы), зеленым – «вперед-назад» (у-элементы), синим – «вверх-вниз» (z-элементы). На их основе создаются трехмерные изображения трактов.

Трактография – не рутинный метод клинической диагностики, а предмет научных исследований. В настоящее время трактографию пробуют применять в диагностике аксональных повреждений при хронической ишемии головного мозга и при болезнях мотонейрона, при рассеянном склерозе и остром диссеминированном энцефаломиелите, опухолях головного мозга и аномалиях развития ЦНС, кортикальных инфарктах. Также для уточнения топографии прохождения проводящих путей в белом веществе головного мозга предложили сочетать трактографию с обычным анатомическим исследованием мозга. На основании метода трактографии были составлены атласы анатомии проводящих путей белого вещества головного мозга, причем с его помощью их данные были уточнены.

Возможно исследование in vivo проводящих путей мозга человека и подопытных животных, сравнение их между собой. Интересное направление исследований – осуществление комбинации функциональной МРТ (фМРТ), диагностирующей изменения кровотока и оксигенации головного мозга, с трактографией, поскольку при этом возможна одновременная визуализация активированных областей головного мозга и идущих от них в другие области проводящих путей.

ДВ МРТ можно использовать для диагностики повреждения головного мозга в результате гипоксии в родах или лекарственного воздействия, возникших при нарушении кровотока. Кроме того, ДВ МРТ и трактография дают дополнительную информацию о развитии головного мозга. ДВ МРТ может быть полезна при диагностике многочисленных заболеваний белого вещества головного мозга. Например, при травме, нарушениях мозгового кровообращения, опухолях головного мозга, фокальной эпилепсии, рассеянном склерозе, туберозном склерозе, болезнях Паркинсона и Альцгеймера, ВИЧ-инфекции, болезни Краббе, церебральной адренолейкодистрофии, алкогольной или гипертонической энцефалопатии, митохондриальных энцефаломиопатиях и некоторых других заболеваниях.

При опухолях головного мозга трактография позволяет определить повреждение и смещение проводящих путей белого вещества, асимметрию проводящих путей белого вещества между здоровым и пораженным опухолью полушарием головного мозга.

Опухоли и отек вокруг них – частая причина значительных изменений в волокнах, прилежащих к ним проводящих путей. ДВ МРТ и трактография могут использоваться при изучении роста опухоли и планировании оперативного вмешательства. При больших по размеру инфильтративных опухолях кон- векситальной локализции, при которых нет особых сложностей с точки зрения операционного доступа (если, конечно, они расположены на удалении от главных корковых анализаторов), основным вопросом является объем возможной резекции в глубинных отделах головного мозга, особенно если у пациента нет грубых неврологических нарушений. Хирургическое повреждение проекционных проводящих путей, например, пирамидного пути, может повлечь за собой выраженное углубление или появление пареза при, казалось бы, тотальном удалении опухоли и великолепно проведенном оперативном вмешательстве. Знание взаимоотношения проводящих путей и границ опухоли на сегодняшний день уже является неотъемлемой частью предоперационного планирования объема резекции во многих клиниках.

При проведении ДВ МРТ у пациентов с рассеянным склерозом выявляется повышение диффузии в очагах демиелинизации головного мозга. Кроме того, было установлено, что в «острых» бляшках (развившихся менее 3 месяцев назад) диффузия молекул воды выше, чем в «старых» (более 3 месяцев) очагах поражения; наибольшая величина диффузии характерна для очагов, гипоинтенсивных в режиме Т1, а самые выраженные изменения (снижение) анизотропии диффузии наблюдались в очагах, накапливающих контрастное вещество.

Изучение взаимосвязи между очагами демиелинизации и поврежденными проводящими путями может помочь в понимании механизмов аксонального повреждения. Некоторые волокна проводящих путей обрываются в очагах демиелинизации, некоторые продолжают свой ход дальше. По данным J. Simon et al. (2005), поврежденные пути можно идентифицировать на ранних стадиях заболевания, когда диагноз рассеянного склероза еще не поставлен. Очаги демиелинизации часто рассеяны по головному мозгу и имеют разную степень активности. Визуализация поврежденных проводящих путей при помощи трактографии поможет в оценке активности очагов. Идентификация областей серого вещества, с которым соединяются поврежденные проводящие пути, объяснит клинические проявления рассеянного склероза.

В настоящее время идет его активное изучение при помощи ДВ МРТ и трактографии, поскольку эти методики помогают в понимании заболевания и планировании дальнейших исследований. Белое вещество головного мозга также может поражаться при ВИЧ-инфекции. В то же время при относительно неагрессивном течении и при наличии когнитивных нарушений трудно выявить структурные изменения белого вещества. В такой ситуации ДВ МРТ становится методикой, более чувствительной к выявлению поражения белого вещества головного мозга, чем обычная МРТ.

Помимо академического интереса знание точной локализации и внутренней организации КСТ при прохождении через лучистый венец и заднее бедро внутренней капсулы имеет крайне важное практическое значение. К примеру, оно может быть использовано при планировании нейрохирургических операций у пациентов с болезнью Паркинсона, с кровоизлияниями, и особенно для пре- и даже интра-оперативной локализации КСТ у больных с опухолями головного мозга. Случайное пересечение КСТ может иметь крайне негативные последствия, в то время как трактография позволяет точно описать взаимосвязь КСТ с опухолью и улучшить планирование операции.

Таким образом, трактография становится доступной методикой магнитно-резонансного исследования головного мозга. Она удлиняет проведение процедуры МРТ всего на 7–9 минут. При наличии специального программного обеспечения обработка ДВ изображений занимает менее 5 минут. Методика реконструкции трактограмм необременительна для неврологов или специалистов по лучевой диагностике. Таким образом, трактографию можно использовать в рутинной клинической практике.

Трактография имеет определенные ограничения:

  • ДВ МРТ хорошо отображает анатомическую структуру проводящих путей, но не дает информации о процессах, происходящих в синапсах. Пространственное разрешение 1,5-тесловых томографов составляет приблизительно 1–2 мм. В воксел такого объема помещается множество синаптических соединений, которые не могут быть видны, поэтому такие крупные проводящие пути, как кортикоспинальный тракт или мозолистое тело, хорошо видны при помощи трактографии, в то время как визуализация, например, мозжечково-таламо-кортикальных соединений затруднена;
  • трактография определяет пространственную ориентацию и связи проводящих путей, но подвержена ошибкам, связанным с эффектом частичного объемного усреднения, шумом, нет корректным выделением области интереса;
  • техника проведения трактографии зависит от исследователя – его знания анатомии проводящих путей и умения соотнести их с МР-изображениями;
  • результаты трактографии определяются исследователем визуально, поэтому они весьма субъективны. Эта методика нуждается в дальнейшей стандартизации. Кроме того, это в большей степени экспериментальный прием, требующий дальнейшей активной разработки;
  • интерпретация трактограмм осложнена отсутствием «золотого стандарта», поскольку это единственный метод визуализации проводящих путей in vivo, в то время как при гистологическом исследовании in vitro мозг подвергается деформации из-за выполнения секции, охлаждения, дегидратации, фиксации.

Facebook

Twitter

Вконтакте

topnb.tula-zdrav.ru

Проводящие пути головного мозга и Диффузионно-тензорная визуализация (ДТВ, DTI).

Диффузионно-тензорная визуализация (ДТВ, DTI), или МР трактография — методика, позволяющая оценить диффузию молекул воды вдоль миелиновой оболочки нервных волокон и получить информацию о связях между различными отделами головного мозга и целостности проводящих путей (нервных трактов, пучков нервных волокон).

Анатомия.

Проводящие пути –цепь нейронов, соединяющих функционально однородные участки серого вещества в ЦНС, занимающих в белом и сером веществе головного и спинного мозга определенное место и проводящих одинаковый импульс.

Проводящие пути являются частью сложных рефлекторных дуг, которые соединяют между собой различные отделы центральной нервной системы и обеспечивают двухстороннюю функциональную связь между отдельными структурами головного и спинного мозга. Они отличаются многочисленностью, сложностью строения и надежностью функционирования.

В зависимости от величины, формы и направления нервного импульса проводящие пути получают название: путь (tractus), пучок (fasciculus), волокна (fibrae), спайка (commissura), петля (lemniscus) или лучистость (radiatio).

Все проводящие пути ЦНС подразделяют на три группы:

1. Проекционные.

2. Комиссуральные.

3. Ассоциативные.

В процессе становления проводящей системы в онтогенезе первоначально формируются проекционные пути, а затем комиссуральные и ассоциативные.

Ассоциативные проводящие пути соединяют участи коры в пределах одного полушария.

Различают:

А. Короткие волокна, дугообразные волокна, fibrae arcuatae cerebri, которые соединяют корковые поля соседних извилин.

Б. Длинные волокна, которые соединяют корковые поля отдаленных извилин (верхний продольный пучок, fasciculus longitudinalis superior, нижний продольный пучок, fasciculus longitudinalis inferior, пояс, cingulum, крючковидный пучок, fasciculus uncinatus).

Коммиссуральпые пути соединяют симметричные части правого и левого полушарий. К ним принадлежат:

1. Мозолистое тело, corpus callosum.

2. Передняя спайка, commissura anterior. Относится к обонятельному мозгу.

3. Спайка свода, commissura hippocampi (fornicis). Соединяет корковые поля гиппокампа правого и левого полушарий.

4. Задняя спайка, comissura posterior.

5. Спайка поводков, comissura habenulare.

6. Межталамическое сращение, adhesio intertalamica.

Проекционные пути соединяют кору с подкорковыми образованиями головного мозга и спинным мозгом.

Проекционные проводящие пути связывают кору головного мозга с его нижележащими отделами (короткие проводящие пути) и со спинным мозгом (длинные проводящие пути).

По направлению проведения нервного импульса проекционные пути подразделяют на две группы:

• афферентные(восходящие, центростремительные, чувствительные), которые проводят нервный импульс от рецепторов, воспринимающих информацию из внешнего мира или внутренней среды организма к различным отделам головного мозга и к коре полушарий;
• эфферентные(нисходящие, центробежные, двигательные), передающие импульс от коры головною мозга и других его отделов на периферию.

Диффузионно-тензорная визуализация (ДТВ, DTI), или МР трактография — методика, позволяющая оценить диффузию молекул воды вдоль миелиновой оболочки нервных волокон и получить информацию о связях между различными отделами головного мозга и целостности проводящих путей (нервных трактов, пучков нервных волокон).

МР трактография — это диффузионно-взвешенная МРТ проводящих путей центральной нервной системы.

Трактография — дополнение к стандартным методам ДВ МРТ, позволяющее получить более детальную информацию об ориентации и кривизне (угле наклона) проводящих путей белого вещества при прохождении через весь головной мозг. При этом для построения траектории диффузии воды по волокнам проводящих путей используется как матрица числовых значений, так и векторы диффузии воды. Траектории изображаются графически в виде пучка кривых. Кроме того, есть методы, позволяющие на основе диффузионной информации построить карты, в которых цветом обозначена ориентация волокон белого вещества. Как правило, при его повреждении повышается диффузия и изменяется направление движения молекул воды. Считается, что по таким изменениям диффузии можно выявить поражение аксонов, а также оценить выраженность демиелинизации, глиоза или других патологических процессов.

Протокол исследования

Трактографию проводят на МР-томографах с силой поля 1,5-3 Тл. Это выглядит так: используется многоканальная (не менее 6 каналов) фазированная поверхностная катушка для головного мозга. Для ДВ МРТ применяют спин-эхо и эхо-планарную последовательность (single-shot spin-echo echo-planar imaging). Для коррекции двигательных артефактов используют эхо-навигатор. Применяется методика параллельной томографии (например, SENSE) с фактором 2-4. Количество срезов — 96. Они ориентированы перпендикулярно линии, соединяющей переднюю и заднюю спайки мозга. Толщина среза — 2,3 мм, промежуток между ними — 0, поле изображения — 220 мм, время повторения (TR) — 6,599-8,280 мс, время эхо (ТЕ) — 70 мс, количество у среднений — 2, коэффициент диффузии (Ь) — 600 с/мм2. Время исследования — около 9 минут.

Обработка данных

Реконструкцию трактограмм проводят с использованием специального программного обеспечения. После получения МР-изображений исследователь, знакомый с анатомией и физиологией головного мозга, выделяет область интереса, в которой будет проводиться реконструкция трактограмм (например, кортикоспинальный тракт на аксиальных изображениях, мозолистое тело на сагиттальных). В результате получаются векторные карты, в которых направление диффузии кодируется цветом: чаще всего красным обозначается движение воды «вправо-влево» (х-элементы), зеленым — «вперед-назад» (у-элементы), синим — «вверх-вниз» (z-элементы). На их основе создаются трехмерные изображения трактов (рис. 3).


Рисунок №1

Диффузионная МРТ.
а — диффузионно-взвешенное изображение; б — диффузионная цветовая карта на этом уровне.

Рисунок №2

Рисунок, на котором изображены кортикоспинальные волокна и волокна мозолистого тела в норме.

Рисунок № 3, 4

Трактограммы мозга здорового добровольца

Первый ряд изображений — область пересечения волокон мозолистого тела и путей, идущих к переднему бедру внутренней и наружной капсул; Второй ряд изображений — таламокортикальные и кортикоталамические соединения префронтапьной коры; Третий ряд изображений — разделение свода мозолистого тела на волокна, идущие к правой и левой височной доле В каждом случае область интереса (ROI) обозначена желтой точкой на изображениях в левом столбце. В среднем изображены проекции трактограмм на области мозга. В правом столбце приведены увеличенные изображения фрагментов проводящих путей

Рисунок №5

Структурная и функциональная реорганизация у пациента после инсульта. ДТИ реконструкция кортикоспинального пути. Структурная асимметрия.

Рисунок №6

Представлена трактография при различных нейродегенеративных расстройствах, влияющих на познание.

Рисунок №7

Патологические изменения проводящих путей при опухоли головного мозга.
Источник:

  • Журнал — Lancet
    Diffusion-based tractography in neurological disorders: concepts, applications, and future developments.
    Olga Ciccarelli, Marco Catani, Heidi Johansen-Berg, Chris Clark, Alan Thompson
  • Neurology India
    Diffusion tensor imaging: A colorful collage or a clinical tool?
    TOPIC OF THE ISSUE-EDITORIAL
    Year : 2010 | Volume : 58 | Issue : 6 | Page : 877-878
  • Трактография головного мозга: метод визуализации проводящих путей на основе диффузионно-взвешенной магнитно-резонансной томографии. М.К.Устюжанина, В.Е.Синицын
  • Radiomed

24radiology.ru

Диффузионно-тензорная трактография

Диффузионно-тензорная визуализация (ДТВ, DTI), или МР трактография — методика, позволяющая оценить диффузию молекул воды вдоль миелиновой оболочки нервных волокон и получить информацию о связях между различными отделами головного мозга и целостности проводящих путей (нервных трактов, пучков нервных волокон).

Трактография — дополнение к стандартным методам получения диффузионно-взвешенных изображенй, позволяющее получить более детальную информацию об ориентации и кривизне (угле наклона) проводящих путей белого вещества при прохождении через весь головной мозг. При этом для построения траектории диффузии воды по волокнам проводящих путей используется как матрица числовых значений, так и векторы диффузии воды. Траектории изображаются графически в виде пучка кривых. Кроме того, есть методы, позволяющие на основе диффузионной информации построить карты, в которых цветом обозначена ориентация волокон белого вещества. Как правило, при его повреждении повышается диффузия и изменяется направление движения молекул воды. Считается, что по таким изменениям диффузии можно выявить поражение аксонов, а также оценить выраженность демиелинизации, глиоза или других патологических процессов.

Анатомия

Проводящие пути — цепь нейронов, соединяющих функционально однородные участки серого вещества в ЦНС, занимающих в белом и сером веществе головного и спинного мозга определенное место и проводящих одинаковый импульс. Проводящие пути являются частью сложных рефлекторных дуг, которые соединяют между собой различные отделы центральной нервной системы и обеспечивают двухстороннюю функциональную связь между отдельными структурами головного и спинного мозга. Они отличаются многочисленностью, сложностью строения и надежностью функционирования.

В зависимости от величины, формы и направления нервного импульса проводящие пути получают название:

  • путь (tractus)
  • пучок (fasciculus)
  • волокна (fibrae)
  • спайка (commissura)
  • петля (lemniscus)
  • лучистость (radiatio)

Все проводящие пути ЦНС подразделяют на три группы:

  1. Проекционные
  2. Комиссуральные
  3. Ассоциативные

В процессе становления проводящей системы в онтогенезе первоначально формируются проекционные пути, а затем комиссуральные и ассоциативные.

Ассоциативные проводящие пути

Ассоциативные проводящие пути соединяют участи коры в пределах одного полушария.

Различают:

  • короткие волокна, которые соединяют корковые поля соседних извилин
    • дугообразные волокна (fibrae arcuatae cerebri)
  • длинные волокна, которые соединяют корковые поля отдаленных извилин
    • верхний продольный пучок (fasciculus longitudinalis superior)
    • нижний продольный пучок (fasciculus longitudinalis inferior)
    • пояс (cingulum)
    • крючковидный пучок (fasciculus uncinatus)
Коммиссуральные пути

Коммиссуральные проводящие пути соединяют симметричные части правого и левого полушарий. К ним принадлежат:

  1. мозолистое тело (corpus callosum)
  2. передняя спайка (commissura anterior), относится к обонятельному мозгу
  3. спайка свода (commissura hippocampi / fornicis), соединяет корковые поля гиппокампа правого и левого полушарий
  4. задняя спайка (comissura posterior)
  5. спайка поводка (comissura habenulare)
  6. межталамическое сращение (adhesio intertalamica)
Проекционные проводящие пути

Проекционные пути соединяют кору с подкорковыми образованиями головного мозга и спинным мозгом.

Проекционные проводящие пути связывают кору головного мозга с его нижележащими отделами (короткие проводящие пути) и со спинным мозгом (длинные проводящие пути).

По направлению проведения нервного импульса проекционные пути подразделяют на две группы:

  • аферентные - которые проводят нервный импульс от рецепторов, воспринимающих информацию из внешнего мира или внутренней среды организма к различным отделам головного мозга и к коре полушарий;
  • эфферентные - передающие импульс от коры головною мозга и других его отделов на периферию.​​

Протокол исследования

Трактографию проводят на МР-томографах с силой поля 1,5-3 Тл. Это выглядит так: используется многоканальная (не менее 6 каналов) фазированная поверхностная катушка для головного мозга. Для ДВ МРТ применяют спин-эхо и эхо-планарную последовательность (single-shot spin-echo echo-planar imaging). Для коррекции двигательных артефактов используют эхо-навигатор. Применяется методика параллельной томографии (например, SENSE) с фактором 2-4. Количество срезов — 96. Они ориентированы перпендикулярно линии, соединяющей переднюю и заднюю спайки мозга. Толщина среза — 2,3 мм, промежуток между ними — 0, поле изображения — 220 мм, время повторения (TR) — 6,599-8,280 мс, время эхо (ТЕ) — 70 мс, количество у среднений — 2, коэффициент диффузии (Ь) — 600 с/мм2. Время исследования — около 9 минут.

Обработка данных

Реконструкцию трактограмм проводят с использованием специального программного обеспечения. После получения МР-изображений исследователь, знакомый с анатомией и физиологией головного мозга, выделяет область интереса, в которой будет проводиться реконструкция трактограмм (например, кортикоспинальный тракт на аксиальных изображениях, мозолистое тело на сагиттальных). В результате получаются векторные карты, в которых направление диффузии кодируется цветом: чаще всего красным обозначается движение воды «вправо-влево» (х-элементы), зеленым — «вперед-назад» (у-элементы), синим — «вверх-вниз» (z-элементы). На их основе создаются трехмерные изображения трактов

radiographia.info

Диффузионная тензорная магнитно-резонансная томография и трактография при рассеянном склерозе: обзор литературы - Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски - 2012-02

Рассеянный склероз (РС) - относительно часто встречающееся хроническое демиелинизирующее поражение центральной нервной системы (ЦНС), характеризующееся различными формами клинического течения, распространенности поражения и темпом прогрессирования болезни [50, 52]. Визуализация очагов поражения нервной ткани с использованием традиционных методов компьютерной томографии, в том числе магнитно-резонансной томографии (МРТ), является незаменимым инструментом для дифференциальной диагностики и оценки течения болезни [5], поскольку позволяет с высокой степенью достоверности определять наличие очагов демиелинизации в белом веществе головного и спинного мозга, оценивать изменение их размеров и количества. Однако определение клинически значимых изменений при РС до сих пор представляет собой некоторые трудности в связи с тем, что данные традиционной МРТ (общее количество и объем очагов) слабо коррелируют со степенью неврологического дефицита [3, 4, 55]. В связи с этим возникает необходимость внедрения новых, более чувствительных и специфичных методов исследования [29]. Последние разработки в области методов нейровизуализации позволяют не только прижизненно изучать патологические изменения, происходящие в белом и сером веществе головного мозга, которые приводят к возникновению неврологического дефицита, но и уточнить различные аспекты патогенеза. Одним из таких методов является диффузионная тензорная магнитно-резонансная томография (DTI - diffusion-tensor imaging) с трактографией, основанная на измерении величины и направления диффузии молекул воды в веществе мозга, представляет собой одну из наиболее адекватных методик для оценки поражения вещества мозга. Она позволяет воспроизвести трехмерную реконструкцию волокон белого вещества, а также обнаружить и оценить повреждение проводящих путей [19, 63, 73]. Кроме того, получаемые с ее помощью данные возможно использовать для установления корреляций между поражением проводящих путей и неврологическим дефицитом в соответствующей системе [57, 86].

Основы диффузионной тензорной магнитно-резонансной томографии и трактографии

Анизотропия движения молекул воды в белом веществе головного мозга заинтересовала исследователей с самого начала применения диффузионно-взвешенной МРТ [61, 62]. Однако лишь несколькими годами позже было установлено, что движение молекул воды вдоль волокон белого вещества происходит гораздо активнее, чем в перпендикулярных направлениях [7-10]. Именно эта разница и легла в основу получения диффузионных тензорных изображений.

Тензор диффузии представляет собой математическое описание величины и направления диффузии молекул воды в трехмерном пространстве [7] и дает возможность получить данные о величине анизотропии диффузии и направлении максимальной диффузии в каждом вокселе (воксел - элемент объемного изображения, определяемый трехмерными координатами) [19]. Из значений тензора возможно вычислить некоторые скалярные индексы, основными из которых являются: средняя диффузионная способность (MD), которая характеризует усредненное движение молекул в среде вне зависимости от какой бы то ни было направленности и зависит от размера и целостности клеток [8, 65]; фракционная анизотропия (FA), которая отражает анизотропию (неодинаковость свойств среды по различным направлениям внутри этой среды - в противоположность изотропии) процесса диффузии, характеризует степень направленности структур и их целостность [28], принимает значения от 0 (изотропная диффузия) до 1 (полностью анизотропная диффузия).

Считается, что собственные значения тензора в различных направлениях могут отражать специфические патологические процессы и структурные изменения [38, 51, 66]. Собственные значения тензора представляют собой коэффициенты диффузии вдоль трех основных ортогональных осей эллипсоида диффузии. Аксиальный коэффициент диффузии (λ1) отражает диффузионную способность вдоль направления максимальной диффузии. Радиальный коэффициент диффузии (λ23), получаемый путем нахождения среднего двух оставшихся собственных значений тензора (λ2 и λ3), отражает диффузионную способность в направлении, перпендикулярном направлению максимальной диффузии [8]. В то время как λ1 отражает изменения ограничивающих барьеров вдоль направления тракта и внеклеточного пространства, λ23 отражает изменения миелиновой оболочки и внеклеточного пространства [8, 51]. Дезинтеграция мембран и глиоз могут привести к образованию новых барьеров вдоль направления тракта и снижению диффузии в данном направлении (снижению λ1) [8, 45, 65, 80].

В конце 90-х - начале 2000-х годов исследователи стали использовать трехмерную информацию, получаемую при проведении диффузионной тензорной МРТ для построения виртуальных траекторий волокон белого вещества в трехмерном пространстве [10, 14, 22, 59]. Так появилась МР-трактография, основной идеей которой является создание линий в направлении основных проводящих путей головного мозга, что соответствует предположению о том, что максимальная диффузия наблюдается по ходу волокон белого вещества.

Для построения линий алгоритмы трактографии используют данные о величине анизотропии диффузии и направлении максимальной диффузии молекул, позволяющие сделать вывод о непрерывности хода волокон от воксела к вокселу [10, 60, 67], т.е. о сохранении направления максимальной диффузии данного воксела в вокселе, прилежащем к нему. Существующее в настоящее время множество алгоритмов трактографии можно объединить в две основные группы: детерминированную и вероятностную трактографию. Детерминированный подход заключается в том, что единый путь строится в двух направлениях из заданной начальной точки в соответствии с главным направлением диффузии (λ1), параллельным главенствующей ориентации волокон белого вещества в каждом вокселе [6]. Вероятностный подход нацелен на устранение таких недостатков детерминированного, как, например, построение единого тракта из одной начальной точки без рассмотрения возможности его разветвления. Вероятностный алгоритм позволяет получить множественные пути, исходящие из единой начальной точки и из каждой точки вдоль отреконструированных траекторий, с целью определения ветвления пучков волокон, а также измерения «возможности», которая может быть приписана каждому реконструированному тракту [41]. Использование вероятностного алгоритма трактографии позволяет получить дополнительный числовой параметр - коннективность (voxel-based connectivity), которая представляет собой индекс, получаемый от каждого воксела и определяющий возможность его связи с начальной точкой [19].

Охарактеризованные выше исследования в настоящее время проводятся в Научном центре неврологии РАМН. Пример использования DTI и трактографии у здорового человека, полученные на магнитно-резонансном томографе Siemens MAGNETOM Avanto с величиной магнитной индукции 1,5 Тл при помощи приложения Neuro3D, представлены на рис. 1 и 2 (см. цв. вклейку).Рисунок 1. Трактография (все полученные тракты) здорового человека. Цветом закодировано направление волокон: синим – по оси z, красным – по оси x, зеленым – по оси у.Рисунок 2. Трактография мозолистого тела, наложенная на карту фракционной анизотропии.

Диффузионная тензорная магнитно-резонансная томография и трактография головного мозга у больных рассеянным склерозом

Первые исследования РС с использованием диффузионной тензорной МРТ фокусировались на оценке очагов демиелинизации и внешне неизмененного белого вещества (NAWM - normal appearing white matter). Одно из них относится к 1992 г. [49]. В результате проведенной работы было показано, что диффузия молекул воды внутри бляшек РС выше, а FA - ниже, чем в NAWM (рис. 3, см. цв. вклейку). Кроме того, было установлено, что в «острых» бляшках (развившихся менее 3 мес назад) диффузия молекул воды выше, чем в «старых» (более 3 мес) очагах поражения. Эти данные были подтверждены последующими исследованиями, где, кроме этого, было показано, что коэффициент диффузии в NAWM пациентов с РС выше, чем у здоровых добровольцев [25, 40]. В 1999 г. D. Werring и соавт. [84] на небольшой группе больных РС показали, что наибольшая величина диффузии характерна для очагов, гипоинтенсивных в режиме Т1, а самые выраженные изменения (снижение) анизотропии диффузии наблюдались в очагах, накапливающих контрастное вещество [84].

По результатам первого исследования крупной когорты пациентов, опубликованного в 2001 г. [28], было обнаружено, что при РС MD в NAWM выше, а средняя FA ниже, чем в группе здоровых испытуемых, что подтверждает поражение вещества мозга и вне видимых очагов. При сравнении различных зон белого вещества головного мозга достоверные отличия были обнаружены между перивентрикулярным белым веществом и белым веществом лобных долей. Показатели, полученные при исследовании макроскопически видимых бляшек РС, значимо отличались от показателей NAWM: MD была выше, а FA ниже, чем в NAWM. По показателям MD накапливающие и ненакапливающие контрастное вещество очаги достоверно не отличались, однако FA в накапливающих контрастное вещество очагах была достоверно ниже, чем в ненакапливающих. Кроме того, согласно данным этого же исследования, в очагах, сопровождающихся гипоинтенсивным МР-сигналом в режиме Т1, наблюдаются более высокая MD и более низкая FA, чем в очагах изоинтенсивного МР-сигнала в режиме Т1. В связи с этим можно напомнить, что, согласно микроскопическому анализу накапливающих контрастное вещество бляшек РС, именно повышение проницаемости гематоэнцефалического барьера (ГЭБ), значительный отек, воспалительная инфильтрация, процесс демиелинизации и потеря аксонов [33, 42, 69] приводят к повышению MD и cнижению FA.

Важно отметить, что при сравнении MD и FA внутри очагов и в NAWM при трех вариантах течения РС (ремиттирующем, первично-прогрессирующем и вторично-прогрессирующем) между собой достоверных отличий отмечено не было [28]. Корреляция между степенью выраженности неврологического дефицита (по шкале EDSS - Expanded Disability Status Scale) и показателями диффузионной тензорной МРТ внутри очагов была обнаружена только у пациентов с вторично-прогрессирующим РС. Пример DTI-исследования зоны интереса (заднее бедро внутренней капсулы с двух сторон) с расчетом FA и MD приведен на рис. 3 (выполнен на основе исследования, проведенного на магнитно-резонансном томографе Siemens MAGNETOM Avanto с величиной магнитной индукции 1,5 Тл при помощи приложения Neuro3D).Рисунок 3. Показатели диффузии (FA и MD) внутри (зона 1) и вне (зона 2) очага рассеянного склероза.

При проведении традиционного МРТ-исследования у некоторых больных, помимо очагов в белом веществе головного мозга, определяются диффузные зоны слабо повышенной интенсивности МР-сигнала в режиме Т2 с нечеткими контурами, которые получили название «грязного» белого вещества (DAWM - dirty appearing white matter) [15, 32, 74, 77]. Известно, что в этих зонах наблюдаются потеря миелина и аксонов, а также хронический изоморфный глиоз, а сами они считаются некоторыми исследователями отдельной патологической единицей при РС [58, 77]. При исследовании с помощью диффузионной тензорной МРТ эти зоны занимают промежуточное положение между NAWM и очагами РС: MD в них достоверно выше, а FA достоверно ниже, чем в NAWM и, соответственно, MD достоверно ниже, а FA выше, чем в очагах [83].

Помимо оценки очагового демиелинизирующего процесса и NAWM, одним из наиболее благоприятных объектов DTI-исследования является кортикоспинальный тракт. Актуальность исследования именно кортикоспинального тракта при РС обусловлена плотным расположением его волокон, а следовательно, высокой анизотропией, известным анатомическим ходом тракта и частым его поражением с развитием в ряде случаев необратимого неврологического дефицита.

При исследовании пирамидного тракта у пациентов с РС при помощи диффузионной тензорной МРТ было показано [38, 66], что имеются выраженные нарушения как MD, так и FA не только в очагах, но и в так называемом «нормальном» кортикоспинальном тракте: по сравнению со здоровыми испытуемыми у больных РС наблюдаются достоверно более высокие значения MD и λ23, достоверно более низкая FA и тенденция к более низкому значению λ1 в «нормальном» кортикоспинальном тракте. В то же время очаги, расположенные в области прохождения кортикоспинального тракта, имели достоверно более высокое значение λ23 и низкую FA по сравнению с «нормальным» кортикоспинальным трактом, в то время как MD и λ1 внутри и вне очагов достоверно не отличались. Учитывая тот факт, что значение λ1 максимально при интактных аксонах, а λ23 в свою очередь минимально в области однонаправленных пучков плотно прилегающих друг к другу миелиновых волокон, демиелинизация, вероятно, приведет к увеличению λ23, в то время как аксональная дегенерация должна сопровождаться снижением λ1, что согласуется с экспериментальными данными [12, 23, 44, 76, 78, 79].

Не было обнаружено [34] достоверных корреляций между индексами, полученными при DTI-исследовании пирамидного тракта и показателями функциональных шкал (EDSS и PFS - Pyramidal Functional System), кроме тенденции к связи между FA «нормального» пирамидного тракта и значением PFS, что может отражать бо'льшую чувствительность FA по сравнению с другими индексами. Отсутствие корреляции с EDSS могло быть вызвано тем фактом, что она является общей шкалой, характеризующей наличие или отсутствие дефицита в различных функциональных системах, в то время как внимание исследователей было сконцентрировано на пирамидной системе. Однако показатель коннективности кортикоспинального тракта коррелировал с оценками по EDSS и PFS, что позволило предположить, что коннективность представляет собой дополнительный к FA показатель.

Кроме пирамидного тракта исследуются и другие пучки волокон, обеспечивающие связь различных отделов коры, которые неизбежно вовлекаются в патологический процесс при РС. К ним в первую очередь относятся мозолистое тело и верхний продольный пучок, расположенные в непосредственной близости от боковых желудочков [53]. У пациентов с ремиттирующим РС при разделении мозолистого тела на 7 сегментов (колено, валик и 5 отделов корпуса) показатели DTI в колене мозолистого тела существенно не отличались от таковых у здоровых испытуемых, в то время как обнаруживалось снижение FA в переднем и заднем сегментах корпуса, возможно, вследствие редукции тонких волокон [37], а также тенденция к снижению FA в валике мозолистого тела. Кроме того, по данным другого исследования [29], в задних отделах мозолистого тела наблюдались увеличенные показатели λ1 и λ23, что можно объяснить потерей миелина межполушарными пучками волокон. Показатели MD, λ1 и λ23 в верхнем продольном пучке также отличаются у пациентов с РС по сравнению со здоровыми. Вышеуказанные показатели DTI в задних отделах мозолистого тела и верхнем продольном пучке коррелировали с продолжительностью болезни и ее симптомов, однако ни один из них достоверно не был связан с баллом по EDSS [29].

При исследовании мозолистого тела изучают и отдельные пучки волокон, например транскаллозальный пучок двигательных волокон руки (TCHM - transcallosal hand motor fibers). Уменьшение FA и увеличение λ23, наблюдаемые у пациентов с ремиттирующим РС по сравнению со здоровыми испытуемыми, были связаны с худшим выполнением теста по вставлению колышков в планшет с девятью отверстиями как правой,

www.mediasphera.ru

Нейронауки для всех. Методы: магнитно-резонансная томография

Мы продолжаем рассказывать об основных инструментальных методах нейронаук. И сейчас дошла очередь до любимой игрушки доктора Грегори Хауса, грозы терминаторов последнего поколения: МРТ. Магнитно-резонансная томография (МРТ) — метод получения изображений внутренних органов человека, основанный на явлении ядерно-магнитного резонанса (ЯМР). Что же это такое?


Физика метода

Человеческое тело содержит большое количество протонов — ядер атома водорода: в составе воды, в каждой молекуле органического вещества — белках, жирах, углеводах, мелких молекулах… Протон же — один из немногих атомов, у которого есть собственный магнитный момент или вектор направления. При отсутствии внешнего мощного магнитного поля магнитные моменты протонов ориентированы случайным образом, то есть стрелки векторов направлены в разные стороны.

Если же поместить атом в сильное постоянное магнитное поле, всё меняется. Магнитный момент ядер водорода ориентируется либо сонаправленно направлению магнитного поля, либо в противоположном направлении. Во втором случае энергия состояния будет чуть выше. Если же теперь воздействовать на этим атомы электромагнитым излучением резонансной частоты (к счастью для нас, это частота радиоволн, абсолютно безопасная для человека), то часть протонов поменяют свой магнитный момент на противоположный. А после отключения внешнего магнитного поля они вернутся в исходное положение, выделяя энергию в виде электромагнитного излучения, которое и регистрируется томографом.

Ориентация магнитных моментов ядер а) в отсутствии б) при наличии внешнего магнитного поля


Эффект ЯМР можно представить не только на протонах, но и на любых изотопах, имеющих ненулевой спин (то есть вращающихся в определенном направлении), чья встречаемость в природе (или в организме человека) достаточно велика. К таким изотопам можно отнести 2Н, 31Р,23Na, 14N, 13C, 19F и некоторые другие.

История МРТ

В 1937 году Изидор Раби, профессор Колумбийского университета изучил интересное явление, при котором атомные ядра образцов, помещённые в сильное магнитное поле, поглощали радиочастотную энергию. За это открытие он получил Нобелевскую премию по физике в 1944 году.

Позже две группы физиков из США, одна под руководством Феликса Блоха, другая — Эдварда М. Парселла, впервые получили сигналы ядерного магнитного резонанса от твёрдых тел. За это оба в 1952 также удостоились Нобелевской премии физике.

В 1989 Норман Фостер Рамсей получил Нобелевскую премию по химии за теорию химического сдвига, которую сформулировал в 1949 году. Суть теории в том, что ядро атома можно опознать по изменению резонансной частоты, а любую молекулярную систему может описать её спектр поглощения. Эта теория стала основой магнитно-резонансной спектроскопии. В период с 1950 по 1970 годы ЯМР использовался для химического и физического молекулярного анализа в спектроскопии.

В 1971 году физик Раймонд Дамадьян (США) открыл возможность применения ЯМР для обнаружение опухолей. Он продемонстрировал на крысах, что сигнал водорода от злокачественных тканей сильнее, чем от здоровых. Дамадьян и его команда потратили 7 лет на разработку и создание первого МР-сканера для медицинского отображения человеческого тела.

Доктор Дамадьян при попытке получить собственное МРТ изображение


В 1972 году химик Пол Кристиан Лотербур (США) сформулировал принципы отображения ядерного магнитного резонанса, предложив использовать переменные градиенты магнитного поля для получения двумерного изображения.

В 1975 г. Ричард Эрнст (Швейцария) предложил использовать в магнитно-резонансной томографии фазовое и частотное кодирование и Фурье-преобразования, метод, который используется в МРТ и в настоящее время. В 1991 году Ричард Эрнст удостоился Нобелевской премии по химии за достижения в области импульсной томографии.

В 1976 Питер Мэнсфилд (Великобритания) предложил эхо-планарное отображение (EPI) — самую скоростную методику, основанную на сверхбыстром переключении градиентов магнитного поля. Благодаря этому время получения изображения уменьшилось с нескольких часов до нескольких десятков минут. Именно Питер Мэнсфилд вместе с Полом Лотенбуром в 2003 году получил Нобелевскую премию по физиологии или медицине за изобретение метода магнитно-резонансной томографии. Кстати, любопытно, что с Лотенбуром над созданием метода МРТ работал правнук Альфреда Нобеля, Микаэль Нобель.

Микаэль Нобель. Фото Алексея Паевского (neuronovosti.ru)

Итак, 3 июля 1977, спустя почти 5 часов после начала первого теста, наконец, получили первое изображение среза человеческого тела на первом прототипе магнитного резонансного сканера.

Первое МРТ-изображение среза человеческого тела. Получено 3 июля 1977 года


Устройство томографа

МР-томограф состоит из следующих блоков: магнит, градиентные, шиммирующие и радиочастотные катушки, охлаждающая система, система приема, передачи и обработки данных, система экранирования (см. рис.)

Схема МРтомографа


Магнит — самая, собственно, важная и дорогая часть томографа, создающая сильное устойчивое магнитное поле. Магниты в МР-томографе бывают самые разные: постоянные, резистивные, сверхпроводящие и гибридные.

В томографе с постоянным магнитом поле создается между двумя полюсами, сделанными из ферромагнитных материалов (ферромагнетик — вещество, обладающее магнитными свойствами в отсутствии внешнего магнитного поля). Плюс такого томографа в том, что он не требует дополнительной электроэнергии или охлаждения. Однако создаваемое таким типом томографов поле не превышает по своей индукции 0,35 Тл (Тесла, Тл — единица измерения силы магнитного поля. Надо сказать, что и 0,35 Тл — это мощное магнитное поле, в 10000 раз мощнее магнитного поля Земли). Недостатки постоянных томографов — высокая стоимость непосредственно самого магнита и поддерживающих структур, а также проблемы с однородностью магнитного поля.

В резистивных магнитах поле создается пропусканием сильного электрического тока по проводу, намотанному на железный сердечник. Сила поля таких МРТ примерно чуть больше — 0,6 Тл. Но эти томографы нуждаются в хорошем охлаждении и в постоянном электропитании для поддержания однородности магнитного поля.

В гибридных системах для создания магнитного поля используются и проводящие ток катушки, и постоянно намагниченный материал.

Для создания полей свыше 0,5 Тл обычно необходимы сверхпроводящие магниты, которые очень надежны и дают однородные и стабильные во времени поля. В таком магните поле создается током в проводе из сверхпроводящего материала, не имеющего электрического сопротивления при температурах вблизи абсолютного нуля (-273,15°C). Сверхпроводник пропускает электрический ток без потерь. В МРТ обычно используется провод из ниобий-титанового сплава длиной в несколько километров, вложенный в медную матрицу. Охлаждается эта система жидким гелием. Более 90% производящихся сегодня МР-томографов составляют модели со сверхпроводящими магнитами.

Внутри магнита расположены градиентные катушки, предназначенные для создания небольших изменений главного магнитного поля. Приложенные в трех взаимно перпендикулярных направлениях, градиентные поля позволяют точно локализовать зону интереса в трехмерном пространстве.

Шиммирующая катушка — это катушка с малым током, создающая вспомогательные магнитные поля для компенсации неоднородности главного магнитного поля томографа из-за дефектов основного магнита или присутствия намагниченных объектов в поле исследований.

Радиочастотная (РЧ) катушка представляет собой одну или несколько петель проводника, создающих магнитное поле, необходимое для поворота спинов на 90° или 180° и регистрирующих сигнал от спинов внутри тела.

Еще недавно клинической практике верхний предел напряженности магнитного поля составляет 2 Тл, однако сегодня на рынок выходят уже семитесловые томографы.

Типы МРТ

По виду конструкции МР-томографы могут быть открытые и закрытые. Первые МРТ-сканеры конструировались как длинные и узкие туннели. МРТ открытой конструкции имеют горизонтальные или вертикальные противостоящие магниты и имеют больше пространства вокруг пациента. Существуют системы для исследования пациентов в вертикальном положении.

МРТ-сканер с вертикальным положением пациента


МРТ-сканер открытого типа

 


МРТсканер закрытого типа


Диффузионно-тензорная МРТ.

Этот метод определяет направление и тензор (силу) диффузии молекул воды в тканях: клетках, сосудах, нервных волокнах. Метод не требует использования контрастного вещества и поэтому абсолютно безопасен. На основе полученных в ходе томографии данных строят карты диффузии. Данный метод хорошо подходит для исследования ЦНС, позволяет хорошо визуализировать проводящие структуры мозга. Тензорную МРТ иногда называют трактографией.

Изображение проводящих путей мозга, получено с помощью диффузионно-тензорной МРТ


МР-ангиография. Метод визуализации кровеносных сосудов, основан на отличии сигнала движущихся протонов в крови от сигнала протонов окружающих неподвижных тканей.

МР-ангиография сосудов головы


Функциональная МРТ. Метод основан на регистрации кровообращения активно работающих участков мозга. Этому методу на портале посвящен отдельный материал.

МР-спектроскопия. Метод позволяет определить наличие определённых метаболитов (лактата, креатинина, N-ацетиласпартата и многих других) в тканях, органах и полостях, что позволяет делать выводы о наличии заболевания, его динамике.

Применение МРТ

МРТ позволяет увидеть любые внутренние органы человека, не нанося ему вреда. Высокая разрешающая способность, безопасность делают МРТ весьма популярным и перспективным методом исследования в клинической практике, несмотря на довольно высокую стоимость.

Помимо исследования больших объектов — человека, животных, для исследователей есть и другие способы использования магнитного резонанса. Например, МР-микроскопия. Для химиков, физиков и биологов МР-микроскопия возможно самый мощный инструмент изучения веществ на молекулярном уровне. Можно локализовать в 3D объеме магнитные ядра, позволяющие получать изображения и наблюдать объекты с разрешением, достигающим 10-6 м.

ЯМР-микроскопия сегодня уже применяется для обнаружения микродефектов в различных объектах. Для химиков метод позволяет идентифицировать составы сложных смесей.

Текст: Дарья Прокудина

Первая статья: компьютерная томография

Источники:

1. Хорнак Дж. П. Основы МРТ. 2005

2. Марусина М.Я., Казначеева А.О. Современные виды томографии. Учебное пособие. – СПб: СПбГУ ИТМО, 2006. – 132 с.

3. McRobbie D. W. et al. MRI from Picture to Proton. – Cambridge university press, 2006.

4. http://neuronovosti.ru/www.fonar.com/nobel.htm

5. Александр Грек. Мозги на просвет: Цветные мысли. Популярная механика // 2008 — № 2(64) — стр. 54-58

6. http://neuronovosti.ru/www.bakuprightmri.com

7. http://neuronovosti.ru/mri-center.ru/mrt-otkritogo-tipa

8. Окользин А. В. Магнитно-резонансная спектроскопия по водороду в характеристике опухолей головного мозга //Онкология. – 2007. – Т. 8.

neuronovosti.ru

Диффузионно-тензорная магнитно-резонансная томография в диагностике нейродегенеративных изменений зрительного пути при глаукоме - Вестник офтальмологии - 2015-02

Глаукома — одна из наиболее важных медико-социальных проблем офтальмологии. В России доля глаукомы в нозологической структуре слепоты и слабовидения возросла за 5 лет с 14 до 29% [1]. Столь угрожающая статистика свидетельствует о серьезных трудностях, связанных с пониманием природы глаукомы, а следовательно с диагностикой и лечением этого заболевания.

Ключевым моментом развития глаукомной оптической нейропатии является гибель ганглиозных клеток сетчатки (ГКС) и их аксонов под действием повышенного внутриглазного давления [2]. Около 70% волокон зрительного тракта, формируя ретиногеникулярные пути, заканчиваются в наружном коленчатом теле (НКТ). Таким образом, можно предположить, что НКТ и первичная зрительная кора также вовлечены в патологический процесс. По данным литературы и результатам наших собственных исследований, при глаукоме маркеры нейродегенерации обнаруживаются в центральных отделах зрительного анализатора [3—6].

In vivo атрофию зрительных путей можно диагностировать с помощью магнитно-резонансной томографии (МРТ). В литературе приводятся данные об уменьшении диаметра ретробульбарной части зрительного нерва у пациентов с глаукомой [7—8]. Также описаны атрофические изменения НКТ [9], уменьшение плотности серого вещества мозга в затылочной области, коррелирующее с результатами статической периметрии [10].

Оценить состояние ретробульбарной части зрительного нерва, зрительной лучистости, НКТ и зрительной коры у пациентов с глаукомой стало возможным с появлением методики диффузионно-тензорной магнитно-резонансной томографии (ДТ МРТ). Этот метод нашел широкое применение в диагностике рассеянного склероза [11, 12], инсультов различной локализации [13], болезни Альцгеймера [14]. Основан он на измерении величины и направления диффузии молекул воды в веществе мозга. ДТ МРТ позволяет провести количественную оценку состояния проводящих путей головного мозга, а также создать их трехмерную реконструкцию, обнаружить и определить повреждение волокон белого вещества. Основным параметром, получаемым при ДТ МРТ, является фракционная анизотропия (ФА) — величина, отражающая «направленную» организацию структур головного мозга и их целостность [12].

Исследуя зрительный нерв методом ДТ МРТ в эксперименте на крысах в 2007 г., Е. Hui показал уменьшение ФА в случае с глаукомой [15]. Примечательно, что гистологическое исследование подтвердило уменьшение количества аксонов ГКС в зрительном нерве в препаратах пораженного глаза. По данным современной литературы, при проведении ДТ МРТ у пациентов с глаукомой по сравнению с результатами в группе контроля отмечено уменьшение параметра ФА в области зрительного нерва, НКТ и зрительной лучистости [16—20]. В работе F. Garaci [18] была установлена обратная корреляция параметра ФА и стадии глаукомы. В исследовании G. Michelson [19] доказана достоверная корреляция толщины перипапиллярных нервных волокон и Ф.А. Таким образом, изменение индексов ДТ МРТ у пациентов с глаукомой может свидетельствовать об аксональной дегенерации на уровне центральной нервной системы (ЦНС) и атрофии проводящих путей зрительного анализатора.

Однако на настоящий момент нет убедительных данных о соответствии изменений в ЦНС, определяемых с помощью МРТ, структурным и функциональным изменениям сетчатки и зрительного нерва у больных с глаукомой.

Цель настоящей работы — изучение нейродегенеративных изменений НКТ и зрительной лучистости при глаукоме с помощью метода ДТ МРТ.

Материал и методы

В клиническое исследование вошли 16 пациентов в возрасте от 61 до 78 лет (средний возраст 72 года), которые были разделены на 2 группы по нозологическому принципу. В основную группу включены 12 пациентов с первичной открытоугольной глаукомой (ПОУГ) различных стадий, в группу контроля — 4 пациента без офтальмологической патологии. Клинико-демографическая характеристика пациентов представлена в табл. 1. МРТ выполняли на магнитно-резонансном томографе Magnetom Avanto («Siemens», Германия) с величиной индукции магнитного поля 1,5 Тл.

Таблица 1. Клинико-демографическая характеристика пациентов, обследуемых при помощи ДТ МРТ

Все стандартные исследования проводили в аксиальной и сагиттальной плоскостях с толщиной срезов 5 мм и межсрезовым интервалом 1,5 мм. Обследование головного мозга включало в себя как стандартные (T1, T2, MPR), так и специальные режимы (диффузионно-взвешенные изображения с построением карт дифузионно-тензорной трактографии). Полученные данные переносили на рабочую станцию Syngo Siemens, где на сгенерированных картах фракционной анизотропии у каждого больного вручную были выделены симметричные области интереса, соответствующие расположению НКТ и зрительной лучистости. Полученные таким методом значения ФА при трехкратном выделении у одного пациента имели сильный разброс. Учитывая небольшую группу исследования и недостоверность получаемых данных, перед нами встала задача разработки метода объективной оценки ФА у пациентов с ПОУГ.

В НИИ глазных болезней была разработана собственная программа по обработке данных ДТ МРТ «Анализатор фракционной анизотропии». Программа автоматически по характеру вокселей в аксиальной проекции распознает зону, имеющую преимущественно дорсовентральную направленность. Исследователь грубо задает границы протяженности исследуемого объекта. После этого программа выделяет ряд профилей, поперечных к исследуемой структуре (X1, X2, X3 … Xn), и находит в каждом профиле воксель с максимальным значением абсолютной анизотропии. Совокупность выявленных в каждом профиле вокселей используется для статистического описания ФА всего объекта.

В конечном итоге значения ФА и ΔФA, определяемые в трех срезах (12, 13 и 14) для НКТ и зрительной лучистости каждого из полушарий, заносили в таблицу Microsoft Exel 2010 и проводили статистическую обработку.

Всем пациентам выполняли статическую автоматическую периметрию (САП) на анализаторе полей зрения Humphrey Visual Field Analyzer II (HFA II) 750 i («Carl Zeiss», Германия) по пороговым программам 30−2 и 60−4. Морфометрические параметры зрительного нерва вычисляли с помощью лазерной сканирующей ретинотомографии на аппарате HRT III. Также выполняли оптическую когерентную томографию (ОКТ) сетчатки и зрительного нерва на аппарате RTVue — 100 («Optovue», США), используя протоколы MM5, GCC, ONH и RNFL.

Статистический анализ и оценку получаемых результатов проводили с помощью программы Statistica 8.0. При сравнении двух независимых групп по количественному признаку использовали U-критерий Манна—Уитни. Взаимосвязи между показателями оценивали с помощью рангового анализа корреляции двух признаков по Спирмену.

Результаты и обсуждение

С использованием разработанной нами программы «Анализатор фракционной анизотропии» были вычислены 2 параметра: ФА и изменчивость ФА (ΔФA) для правого и левого НКТ и зрительной лучистости в трех срезах (12, 13 и 14). Уменьшение Ф.А. и увеличение ΔФA расценивали как критерии нарушения целостности проводящих путей вследствие нарушения аксонального транспорта.

При статистической обработке полученных данных было выявлено достоверное снижение ФА в нижнем срезе (ФA 14) у пациентов с глаукомой по сравнению с аналогичным показателем в группе контроля (медианы значений 0,74 и 0,77 соответственно, р<0,01, критерий Манна—Уитни) (см. рисунок).

Сравнение параметра фракционной анизотропии НКТ и зрительной лучистости (нижний срез) в группе с ПОУГ и группе контроля.

Был произведен попарный корреляционный анализ во всех срезах раздельно для каждого глаза. В качестве весового параметра, показывающего среднюю значимость связей, были взяты средние абсолютные значения корреляции по Пирсону для структур мозга со всеми морфометрическими параметрами. При сопоставлении результатов ДТ МРТ и данных офтальмологического обследования (статическая периметрия, HRT, ОКТ) нами была выявлена следующая закономерность: ФA и ΔФA, измеренные в среднем срезе каждого из полушарий (ФА 13 и ΔФA 13), коррелировали с показателями ипсилатерального глаза; ФA и ΔФA, измеренные в нижнем срезе каждого из полушарий (ФA 14 и ΔФA 14), коррелировали с показателями контралатерального глаза. Обнаруженные закономерности позволили нам говорить о топографии перекрещенных и неперекрещенных волокон зрительного тракта в НКТ и зрительной лучистости по результатам ДТ МРТ и ожидать соответствующей взаимосвязи морфофункциональных, морфометрических параметров сетчатки и зрительного нерва и параметров ДТ МРТ.

При проведении корреляционного анализа Спирмена была установлена средняя и сильная значимая корреляция ΔФA 14 и стадии глаукомы, средней толщины комплекса ГКС (GCC Average), индексов FLV и GLV, толщины перипапиллярных нервных волокон (RNFL Average) (по данным ОКТ), площади НРП (по данным HRT), индексов MD и PSD (по данным САП). Результаты приведены в табл. 2 и 3 для правого и левого глаза соответственно.

Таблица 2. Корреляция морфометрических, морфофункциональных параметров правого глаза и результатов ДТ МРТ Примечание. * — р<0,05 — значимая корреляция.

Таблица 3. Корреляция морфометрических, морфофункциональных параметров левого глаза и результатов ДТ МРТ Примечание. * — р<0,05 — значимая корреляция; ** — р<0,01 — высокая значимая корреляция.

Таким образом, можно говорить о статистически достоверной связи параметра ΔФА, определяемого с помощью ДТ МРТ, и морфометрических, морфофункциональных параметров, определяемых с помощью HRT, ОКТ и САП при глаукоме. Высокая корреляция между параметром ΔФA и стадией глаукомы свидетельствует о распространении нейродегенеративного процесса на зрительные центры при прогрессировании заболевания.

Снижение ФА наружного коленчатого тела и зрительной лучистости у пациентов с глаукомой можно расценивать как показатель аксональной дегенерации на уровне зрительных центров. Полученные нами высокая и средняя корреляции продольной изменчивости ФА и морфометрических, морфофункциональных параметров сетчатки и зрительного нерва служат подтверждением взаимосвязи изменений, происходящих на уровне глаза, и изменений, регистрируемых в зрительных центрах. Таким образом, с помощью ДТ МРТ in vivo можно определить распространение нейродегенеративного процесса на структуры ЦНС при прогрессировании глаукомы.

Участие авторов:

Концепция и дизайн исследования: В.Е., Л.П., И.Н.

Сбор и обработка материала: Л.П., В.Б.

Статистическая обработка: И.Н.

Написание текста: Л.П., И.Н.

Редактирование: В.Е.

Конфликт интересов отсутствует.

www.mediasphera.ru

Диффузионная тензорная МРТ

Визуализация при магнитно-резонансной томографии мозговой паренхимы возможна из-за высокого содержания жидкости в тканях. Применение T1 и T2 взвешенных последовательностей сканирования показывает структуру белого вещества, патологические мягкотканые образования.

Для исследования проводящих путей головного мозга создан уникальный метод – МРТ трактографии, являющийся разновидностью диффузно-тензорной визуализации. Процедура малоинвазивна, безболезненна, не занимает много времени.

Технические особенности МР-трактографии

Оценка проводящих путей с помощью диффузно-тензорного МРТ основана на анализе сигнала от жидкости (атомов водорода), находящейся в магнитном поле, вокруг оболочек нервных волокон. В норме на томограмме, полученной после трактографии, прослеживается линейность по хода трактов. При патологических изменениях возникают искажения сигнала, так как вода затекает внутрь дефектных участков разрушенной оболочки нерва, обуславливая кривизну направления волокна на изображении.

Трактография проводится после нативного МР-сканирования при обнаружении врачом сомнительных деталей, указывающих на повреждение проводящих путей. Длительность исследования не более 9 минут.

Интересные результаты получены на практике при сочетании трактографии с функциональной МРТ. Комбинация методов позволяет одновременно оценить интенсивность кровотока, поступление кислорода и внутримозговой жидкости к интересующему отделу головного мозга. Полученная информация качественно дополняет результаты нативной томографии данными о метаболизме тканей, иннервации и микроциркуляции.

Особенности интерпретации результатов

Затруднения при трактовке трактограмм возникают из-за отсутствия уникализированного стандарта оценки изображений. Сложности у неподготовленных к исследованию специалистов появляются при сопоставлении проводящих пучков с анатомическими деталями мозговых структур при определении расположения нервных трактов. Новизна обуславливает малый набор практических наработок по применению метода, но ежедневно медицинский архив пополняется.

Большинство врачей лучевой диагностики назначают МР трактографию головного мозга с 5 мм шагом. Срезов через данный интервал достаточно для оценки направления нервов, но мало для изучения состояния синапсов – участок связи между двумя нервами, через который происходит передачи сигнала. Современные томографы мощностью более 1,5 Тесла делают томограммы через 1-2 мм, чего достаточно для изучения всех проводных трактов:

  1. Кортикоспинального;
  2. Мозжечково-таламо-кортикального;
  3. Мозолистое тело.

Частое сканирование позволяет избежать некорректной оценки, возникающей по причине программного усреднения сигнала, шумов от окружающих тканей.

Клиническое применение МР трактограмм

Отсутствие «золотого стандарта» практического использования МР-трактографии не мешает выявлять заболевания:

  • Рассеянный склероз;
  • Энцефаломиелит;
  • Аномалии развития центральной нервной системы;
  • Хроническую ишемию мозга;
  • Опухоли;
  • Кортикальные инфаркты.

Применяется обследование для оценки объема оперативного вмешательства при внутримозговых опухолях, динамического анализа состояния трактов в послеоперационном периоде.

xn----xtbekk.xn--p1ai

Диффузионно-взвешенные изображения (ДВИ, DWI)

Диффузионно-взвешенные изображения (ДВИ, DWI) – метод визуализации Броуновского «беспорядочного» движения молекул воды в тканях [1].

Отношение гистологического строения ткани и  скорости диффузии достаточно сложны, но сводятся к тому, что плотность расположения клеток и уменьшение объема внеклеточного пространства ведут к уменьшению диффузии. Диффузионно-взвешенные изображения особенно полезны в диагностике опухолей и ишемии головного мозга.

Териминология

Существует небольшая путаница в том, как врачи и радиологи понимают ограничение диффузии, причем и те и другие иногда на самом деле не понимают, о чем они говорят.

Первая проблема заключается в том, что термин "диффузионно-взвешенное изображение" используется для обозначения ряда различных понятий:

  1. изотропная диффузионная карта (то, что большинство радиологов и называет ДВИ - изотропное изображение с использованием одного коэффициента диффузии b
  2. последовательнось, в результате которой получаеться ДВИ, b=0 и ИКД карты
  3. еще более общий термин, охватывающий все диффузионные методики получения изображений, включая диффузионно-тензорные изображения

Кроме того, также существует путаница в определении патологического ограничения диффузии. Во многом, это связано с широким использованием ДВИ в диагностике инсульта, при котором ишемизированная ткань на изотропных картах имеет высокую интенсивность МР сигнала, и, как бы подразумевается, что в неизмененных участках мозга ограничения диффузии не определяется. А по сути, это является более красивым, но не полностью верным выражением - "диффузия в пораженном участке демонстрирует большее ограничение, чем ожидалось для этой ткани".

Кроме того, не все врачи знакомы феноменом T2-просвечивания - иной причины высокого сигнала на ДВИ.

Для более аккуратной и точной формулировки "ограничения диффузии", врач должен помнить, что мы имеем дело с фактическими значениями ИКД (в условиях полноценного программно-аппаратного обеспечения рабочей станции врача). Также желательно использовать такие формулировки как: "область демонстрирует патологически низкое значения ИКД (патологическое ограничение диффузии)" или  "высокий МР сигнал на изотропных изображениях (ДВИ) подтверждается патологическим ограниченнием диффузии на ИКД картах/изображениях". 

Физика

В отличие от свободной диффузии молекул воды в лабораторных условиях, диффузия молекул воды в вокселе ткани мозга, во-первых ограниченна клеточными мембранами, а кроме того представляет собой комбинацию диффузий воды в следующих пространствах:

  • диффузия внутриклеточной жидкости
    • в цитоплазме в целом
    • в органеллах
  • диффузия внеклеточной жидкости
    • интерстициальной (внутритканевой)
    • внутри сосудов
    • лимфатической
    • различных биологических полостей, например желудочков головного мозга
  • диффузия между внутри- и внеклеточным пространствами

Вклад пространства будет зависеть от ткани и патологического процесса. Например, при остром инсульте головного мозга уменьшение значений ИКД является результатом комбинации: 

  • движения воды во внутриклеточное пространство, приводящего к набуханию клеток,
    • при этом диффузия внутриклеточной жидкости, за счет органелл, итак более ограниченна, чем во внеклеточном пространстве
  • уменьшения объема внеклеточного пространства (за счет набухания) [2]. 

Схожие механизмы приводит к низким значениям ИКД в опухолях с высокой клеточностью (например в лимфоме/PNET или глиоме высокой степени злокачественности).

Клиническое применение

Главная роль ДВИ в следующих клинических ситуациях [3-5]: 

смотрите также Интракраниальная патология с повышением МР сигнала на диффузинно-взвешенных изображениях

МРТ последовательность

На изображени справа показана спин-эхо последовательность с диффузионным градиентом. Градиентная катушка для получения диффузии может быть совмещена с градиентом или градиентами используемыхми для пространственного кодирования. Степень диффузионной взвешености зависит от площади диффузионного градиента, интервала между градиентами, эффекта пространственной локализации градиентов и размера вокселя.

  • стационарная молекула воды (спин/протон) - не подвергается воздействию градиентов диффузии и сохраняет свой сигнал.
  • подвижная молекула воды (спин/протон) - приобретает сдвиг по фазе под воздействием первого градиента и не восстанавливается при следующем импульсе и, следовательно, теряет сигнал.

radiographia.info

Диффузионная МРТ — Википедия. Что такое Диффузионная МРТ

Материал из Википедии — свободной энциклопедии Диффузионная МРТ позволяет реконструировать нервные пути в головном мозге (трактография)

Диффузионная спектральная томография — неинвазивная методика медицинской визуализации, применяемая в магнитно-резонансной томографии, для количественного измерения диффузии молекул воды в биологических тканях. Получила широкое применение для построения трёхмерных моделей головного мозга и мышечных тканей.[1] Диффузия в биологических тканях ограничена множеством препятствий, такими как стенки клеток и нейронные тракты, а характеристики диффузии в тканях изменяются при некоторых заболеваниях центральной нервной системы. Измерив тензор диффузии, можно рассчитать направление максимальной диффузии и тем самым получить информацию о геометрическом строении тканей человека, например, направлении крупных пучков нервных волокон. Как и классическая МРТ, диффузионно-взвешенная визуализация является неинвазивной процедурой: поскольку контраст изображения достигается исключительно при помощи градиента магнитного поля, то не требуется ни инъекции контрастного вещества, ни использования ионизирующего излучения.

Диффузионная, или диффузионно-тензорная магнито-резонансная томография является наиболее широко используемым вариантом МРТ, которым определяется направление диффузии. Каждый пространственный элемент (воксел) определяется более чем одним числовым значением, по томограммам в градациях серого цвета вычисляется тензор (в частности, матрица размером 3×3), описывающий диффузию в трёхмерном изображении. Такие измерения занимают значительно больше времени, чем обычная МРТ, и генерируют большие объёмы данных, которые могут быть обработаны только рентгенологом с помощью различных методов визуализации.

Получение изображения диффузии осуществили в 1980-х годах, и сейчас оно поддерживается всеми современными МРТ-установками, применяясь, в частности, в клинической практике для диагностики инсульта, потому что пострадавшие области мозга на ней чётко видны до того, как их можно рассмотреть при классической томографии. Диффузионная томография была разработана в середине 1990-х годов. Некоторые клиники используют её для хирургических и плановых обследований при радиотерапии. Кроме того, диффузионно-тензорная МРТ используется в медицинских исследованиях для изучения заболеваний, связанных с изменением белого вещества (происходит при болезни Альцгеймера или рассеянном склерозе). Дальнейшее развитие направления диффузионной МРТ является текущим предметом исследований, например, в рамках Human Connectome Projectruen.

Теория

См. также

Примечания

wiki.bio


Смотрите также

© Copyright Tomo-tomo.ru
Карта сайта, XML.

Приём ведут профессора, доценты и ассистенты

кафедры лучевой диагностики и новых медицинских технологий

Института повышения квалификации ФМБА России