Расположение

Москва, ул.Гамалеи, д.15

м. Щукинская, авт/марш. №100 и №681
до ост. "Клиническая больница №86"

Пристройка к поликлинике 1 этаж
Отделение лучевой диагностики

Эл. почта:
[email protected]

 
  • Под контролем
    Под контролем

    Федерального
    медико-биологического
    агентства
  • Профессиональные снимки
    Профессиональные снимки

    на современном томографе
  • Удобное расположение
    Удобное расположение

    рядом с метро Щукинская
  • МРТ коленного сустава 4000 руб
    МРТ коленного сустава 4500 руб.
  • Предварительная запись
    Предварительная запись,
    что исключает ожидание в очереди
  • Возможность получения заключения на CD
    Возможность получения
    результатов на CD

Записаться
на приём

+7 (495) 942-38-23 (МРТ коленного сустава, денситометрия)

+7 (903) 545-45-60 (МРТ остальных зон)

+7 (903) 545-45-65 (КТ)

С 9.00 до 15.00

По рабочим дням

 


 

Единицы хаунсфилда при компьютерной томографии


Шкала Хаунсфилда — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 марта 2013; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 14 марта 2013; проверки требует 1 правка.

Шкала Хаунсфилда — количественная шкала рентгеновской плотности (радиоденсивности).

Шкала единиц Хаунсфилда (денситометрических показателей, англ. HU) — шкала линейного ослабления излучения по отношению к дистиллированной воде, рентгеновская плотность которой была принята за 0 HU (при стандартных давлении и температуре). Для материала X с линейным коэффициентом ослабления μX{\displaystyle \mu _{X}}, величина HU определяется по формуле

μX−μwaterμwater−μair×1000{\displaystyle {\frac {\mu _{X}-\mu _{water}}{\mu _{water}-\mu _{air}}}\times 1000}

где μwater{\displaystyle \mu _{water}} и μair{\displaystyle \mu _{air}} — линейные коэффициенты ослабления для воды и воздуха при стандартных условиях. Таким образом, одна единица Хаунсфилда соответствует 0,1 % разницы в ослаблении излучения между водой и воздухом, или приблизительно 0,1 % коэффициента ослабления воды, так как коэффициент ослабления воздуха практически равен нулю.

Стандарты, указанные выше, были выбраны для практического применения в компьютерной томографии живых организмов (в том числе человека), т.к. их анатомические структуры в значительной степени состоят из связанной воды.

Средние денситометрические показатели[править | править код]

Вещество HU
Воздух −1000
Жир −120
Вода 0
Мягкие ткани +40,0
Кости +400 и выше

Шкала была предложена сэром Годфри Ньюболдом Хаунсфилдом, одним из главных инженеров и разработчиков аксиальной компьютерной томографии. КТ-аппараты стали первыми устройствами, позволяющими детально визуализировать анатомию живых существ в трехмерном виде. С начала 1990-х годов развитие компьютерной технологии позволило разработать 3D-реконструирующее программное обеспечение. Для сравнения, обычные рентгеновские изображения отражают лишь проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень.


см. также Взаимодействие рентгеновского излучения с веществом

ru.wikipedia.org

Что такое шкала хаунсфилда,таблица шкалы хаунсфилда

В основе диагностики КТ лежит использование рентгеновских лучей. Проходя через тело человека, вернее, орган или систему, излучение встречает сопротивление в виде исследуемых тканей. Это свойство называется коэффициентом ослабления (число КТ) и выражается в единицах Hounsfield (HU). Шкала Хаунсфилда названа так по фамилии нобелевского лауреата, совершившего прорыв в области компьютерной томографии.

Особенности шкалы Хаунсфилда

Состояния окружающей среды (кислород, вода и другие) и органы тела человека (кровь, жир, костная субстанция, воздух в легких) — имеют свой уровень плотности. Если их измерить в единицах по шкале Хаунсфилда и систематизировать, получатся данные, по которым можно определять нормальные показатели здоровья каждой части тела.

Этой информацией руководствуются при изучении патологических состояний, происходящих в том или ином органе. При заболеваниях, например, головного мозга (опухолях), способность проникновения рентгеновских излучения сквозь больную область изменяется. Врач сравнивает число КТ при прохождении через здоровые участки с полученными данными и делает вывод — есть патология или нет.

Например, при денситометрии костной ткани берутся показатели здоровой кости и сравнивают с проведенным исследованием. Если число КТ ниже нормального — диагностируется остеопороз.
Средним денситемитрическим показателем (0 HU) — считается плотность воды. Воздух, жир имеют отрицательные значения, мягкие ткани, кости — плюсовые.

Величина «рентгеновской твердости» неспособна точно определить: какая субстанция исследуется. Как пример — плотность мягкой жировой ткани равна воде. На различных аппаратах цифры, говорящие об ослаблении лучей, при прохождении сквозь участки тела, могут отличаться. Соответственно изменяется и число КТ (плотности органа).

На мониторе компьютера шкала Хаунсфилда отображается в виде спектра, состоящего из черно-белых изображений. Его диапазон измеряется в единицах и является денситометрическим уровнем исследуемого участка тела или органа — числом КТ (величина ослабления излучения рентгеновских лучей). Нижнее значение структуры всех плотностей органов или веществ — 1024, верхнее — + 3071.

Изменение окна изображения

В процессе томографии получается сложная информация, выражающаяся в единицах шкалы Хаунсфилда. Обычные компьютерные мониторы улавливают серый цвет, состоящий из 256 оттенков. Чтобы показать остальные 1024 — требуется высокоточный медицинский прибор. При неспособности мониторов показывать полный черно-белый спектр изображений, создали специальную программу перерасчета серого градиента в нужном интервале.

Изображение в виде черно-белого спектра называется окном показателей денситометрии. Если его используют в широком интервале — видна консистенция структур в изучаемом диапазоне, но отличить органы, похожие по своей плотности невозможно. Задав окну параметры центра и ширины, сосредоточив его на нужном участке (окно легкого, мягких тканей) — теряются сведения о составе структур, выходящих за черту диапазона. Но в «окне» хорошо определяются ткани, одинаковые по твердости.

Чем больше изменяется центр и длина окна, тем сильнее становится контрастность изображения и яркость. В зависимости от поставленных целей, врач регулирует параметры настройки и исследует нужные участки тела пациента.

Средние денситометрические значения

Плотность тканей и веществ внешней среды по шкале Хаунсфилда
Данные о числах КТ по шкале Хаунсфилда некоторых органов человека и состояний окружающей среды во время компьютерной томографии:
Тип вещества плотность (HU)

  • Вода 0
  • Воздух — 1000
  • Кровь + 30 — + 70
  • Кости + 200 — + 2000 и выше
  • Жир от — 50 до – 150
  • Головной мозг +2 — +25
  • Мочевой пузырь +15 — +30
  • Сердце +20 — +50
  • Почка +35 — +55
  • Селезенка +40 — + 60
  • Надпочечник +5 — +15
  • Опухоль + 25 — + 70
  • Мышца + 30 — +80
  • Тромб +25 — + 80

Диапазон значений показателей КТ по шкале Хаунсфилда отображается на компьютере серой палитрой. При заданном параметре центра окна, показатель ниже установленного уровня высвечивается черным цветом, выше — белым.

КТ срезы

Для детального исследования заболеваний, в компьютерной томографии используется прибор МСКТ. Составляются таблицы, регистрирующие прохождения рентгеновских лучей через обследуемые части тела человека, отображенные в единицах шкалы Хаунсфилда.

Преимуществом аппарата МСКТ является способность делать снимки в виде послойных срезов, на которых врач может детально рассмотреть интересующий участок. Например, при мультиспиральной КТ головного мозга, на снимке видны мелкие подробности оптического выступа желудочка и масса других деталей, не различаемых на традиционном кт-томографе.

mrtdom.ru

Шкала Хаунсфилда: особенности, денситометрические показатели

Шкала Хаунсфилда тесно связана с компьютерной томографией (КТ), которая широко используется в диагностике различных заболеваний. КТ была разработана в 1972 году, в её основе лежит метод создания снимков поперечного сечения частей тела. Учёные Hounsfield G.N. и Cormack А.М., разработавшие революционную методику исследования, в 1979 году получили Нобелевскую премию.

Действие КТ основано на рентгеновском излучении. Пациент, находящийся внутри КТ-оборудования, поддаётся круговому воздействию веерообразных пучков лучей. Они проходят через человеческое тело под разными углами, и после их интенсивность фиксируется специальными датчиками. Для удержания Х-излучения в изучаемом слое тканей применяют коллиматоры – устройства для получения пучков параллельных лучей (ионизирующих или световых). Благодаря этой технологии можно исследовать слои толщиной всего в несколько десятых долей миллиметра.

В результате образуются рентгеновские снимки поперечного сечения. Поскольку разные анатомические структуры организма по-разному ослабляют рентгеновское излучение, для удобства их различения имеются единицы Хаунсфилда (рус. Н, англ. HU), из которых составлена соответствующая шкала.

Определение и главные особенности шкалы Хаунсфилда

Шкала денситометрических показателей, которая известна как шкала Hounsfield, представляет собой усреднённые данные плотности разных составляющих. Используется для количественного и визуального оценивания органов, материалов и некоторых веществ. На снимке чем темнее изображение – тем плотнее ткань, чем светлее, вплоть до белого – тем меньшая плотность исследуемой части тела.

Середина шкалы находится на 0 и указывает на плотность воды. Далее в отрицательную сторону уходят показатели жировой ткани и воздуха, а в положительную – всех мягких тканей и костей. В общем единицы Хаунсфилда при компьютерной томографии охватывают от -1024 до +1024. На практике, при применении разных аппаратов, этот диапазон может быть другим.

Поскольку показатели являются среднестатистическими, а гистолого-анатомическая структура тканей может заметно различаться, определить с высокой достоверностью, какая именно ткань видна, не всегда получается. Например, органы с большим включением жировой ткани могут своей плотностью определяться как вода.

Изменение окна изображения

Компьютерное оборудование может распознавать различное количество градаций серого цвета. Обычный томограф – около 256, более современный – более 1000 градаций. Поскольку чёрно-белый спектр таблицы компьютерной томографии довольно большой, современные мониторы не могут отобразить весь его диапазон. Для решения этого вопроса применяется программный перерасчёт серого градиента относительно того, какой именно интервал шкалы интересует.

Существует несколько способов применения чёрно-белого спектра снимков.

  1. Широкий диапазон («окно») денситометрических данных – на изображении показываются все структуры, которые смог зафиксировать томограф, но близкие по плотности части трудно поддаются оценке.
  2. Узкое «окно», которое, в зависимости от исследуемой структуры, ещё может называться «мягкотканное окно», «лёгочное окно» и прочие – широкий охват денситометрических данных становится невозможным, поскольку плотность структур, выходящих за пределы установленного «окна», не может быть изучена. Вместо этого те части тела, плотность которых близка, хорошо отображаются.

Таким образом, ширина и центр окна в какой-то мере сравнимы с коррекцией контраста и яркости картинки соответственно. Дело в том, что любое значение ниже минимальной границы шкалы на картинке отображается в чёрном цвете, выше максимальной – в белом. Если сместить центр окна и его границы, можно получить детальное изображение интересующего объекта. Например, если центрировать окно в точке 300 Н и задать ширину 400 Н, можно хорошо рассмотреть мягкие структуры, а вот кости будут абсолютно неразличимы.

Средние денситометрические показатели

Представляемые ниже единицы Хаунсфилда, используемые во время исследования томографом, позволяют ориентироваться в плотности различных тканей.

Плотность тканей по шкале Хаунсфилда при компьютерной томографии:

  • воздух – -1000 Н;
  • лёгочная ткань – от -900 до -750 Н;
  • жир – от -120 до -50 Н;
  • молочная железа – от -100 до -50 Н;
  • кожа – около 0 Н;
  • спинномозговая жидкость – 0-8 Н;
  • вода – от 0 до 10 Н;
  • головной мозг – 2-30 Н, в том числе серое мозговое вещество – 36-46 Н, белое – 22-32 Н;
  • надпочечник – 5-20 Н;
  • поджелудочная железа – 5-40 Н;
  • мочевой пузырь – 10-35 Н;
  • печень – 14-70 Н;
  • сердце – 15-60 Н;
  • мышечная ткань – 20-70 Н;
  • свежее тромботическое образование – 20-90 Н;
  • почка, селезёнка – 30-50 Н;
  • кровь – 35-65 Н;
  • кость – 800-3000 Н.

Плотность патологических образований отличается от нормальной плотности структур, в которых они находятся. Это находит своё отражение на полученной томограмме. Причём, опухолям разных типов тоже свойственна разная интенсивность окрашивания, например:

  • невринома – 15 Н;
  • глиома – 34-54 Н;
  • менингиома – 46-52 Н;
  • краниофарингиома – 62 Н.

Благодаря особенностям прохождения компьютерной томографии проявляется высокая чувствительность к различным опухолевым образованиям. Например, менингиомы определяются до 98 % случаев, а их специфичность – до 97 %. Только около 4 % заболеваний не регистрируются с помощью данной методики.

Развитие современного компьютерного томографа

Компьютерный томограф современного производства определяется как сложнейшая техника, с различными деталями и механическими узлами, которые выполнены с очень высокой точностью. Кроме генераторов рентгеновского излучения, крайне важную роль играют сверхчувствительные детекторы. Для их производства используются самые качественные материалы, совершенствование которых не прекращается.

Немалую часть томографа также занимает программное обеспечение, проводящее диагностику по заданным параметрам, сбор, обработку и анализ изображений КТ. Стандартный пакет программного обеспечения может быть расширен узкоспециализированными приложениями, исходя из специфики применения оборудования.

Совершенствование КТ-оборудования непосредственно связано с детекторами, число которых от модели к модели возрастает, а, вместе с этим, улучшается качество получаемого КТ-изображения.

Постепенно ускорялся процесс переработки машиной информации. Если первая модель, выпущенная в 1973 году, обрабатывала каждый слой изображения около 4 минут, то 3-го и 4-го поколений – 0,7 секунды. С математической точки зрения построение картинки представляет собой решение системы линейных изображений. Так, для получения томограммы размером 300×300 пикселей надо решить 90 000 уравнений. Компьютерная программа решает их с применением методов параллельного вычисления.

Первые томографы были поступательные, а в дальнейшем разработали спиральную и даже многослойную компьютерную томографию. Постепенно были введены в медицину томографы с двумя источниками радиоактивных лучей. Ещё больше ценной информации врачи смогли получать при использовании контрастного усиления и КТ-ангиографии, то есть когда в кровь вводилось контрастное вещество, и далее выполнялось сканирование.

idiagnost.ru

Плотность на кт

Шкала единиц Хаунсфилда (шкала денситометрических показателей, обозначения – рус. Н, англ. HU) – шкала плотности различных веществ, которая используется в методике компьютерной томографии. Вот величины некоторых веществ, материалов и даже органов по шкале Хаунсфилда:

  • Воздух = -1000 HU (или Н).
  • Легкие = от -400 до -700.
  • Жир = от -30 до -180.
  • Молочная железа = от -50 до -100.
  • Вода = 0.
  • Головной мозг = от +2 до +30.
  • Надпочечник = от +5 до +20.
  • Поджелудочная железа = от +5 до +40.
  • Мочевой пузырь = от +10 до +35.
  • Печень = от +14 до +70.
  • Сердце = от +15 до +60.
  • Опухоль = от +20 до +65.
  • Почка = от +30 до +50.
  • Кровь = от +30 до +80.
  • Селезенка = от +30 до +50.
  • Кости = от +150 до +1000 HU (или Н) и даже выше.

В основе диагностики КТ лежит использование рентгеновских лучей. Проходя через тело человека, вернее, орган или систему, излучение встречает сопротивление в виде исследуемых тканей. Это свойство называется коэффициентом ослабления (число КТ) и выражается в единицах Hounsfield (HU). Шкала Хаунсфилда названа так по фамилии нобелевского лауреата, совершившего прорыв в области компьютерной томографии.

Особенности шкалы Хаунсфилда

Состояния окружающей среды (кислород, вода и другие) и органы тела человека (кровь, жир, костная субстанция, воздух в легких) — имеют свой уровень плотности. Если их измерить в единицах по шкале Хаунсфилда и систематизировать, получатся данные, по которым можно определять нормальные показатели здоровья каждой части тела.

Этой информацией руководствуются при изучении патологических состояний, происходящих в том или ином органе. При заболеваниях, например, головного мозга (опухолях), способность проникновения рентгеновских излучения сквозь больную область изменяется. Врач сравнивает число КТ при прохождении через здоровые участки с полученными данными и делает вывод — есть патология или нет.

Например, при денситометрии костной ткани берутся показатели здоровой кости и сравнивают с проведенным исследованием. Если число КТ ниже нормального — диагностируется остеопороз.
Средним денситемитрическим показателем (0 HU) — считается плотность воды. Воздух, жир имеют отрицательные значения, мягкие ткани, кости — плюсовые.

Величина «рентгеновской твердости» неспособна точно определить: какая субстанция исследуется. Как пример — плотность мягкой жировой ткани равна воде. На различных аппаратах цифры, говорящие об ослаблении лучей, при прохождении сквозь участки тела, могут отличаться. Соответственно изменяется и число КТ (плотности органа).

На мониторе компьютера шкала Хаунсфилда отображается в виде спектра, состоящего из черно-белых изображений. Его диапазон измеряется в единицах и является денситометрическим уровнем исследуемого участка тела или органа — числом КТ (величина ослабления излучения рентгеновских лучей). Нижнее значение структуры всех плотностей органов или веществ — 1024, верхнее — + 3071.

Изменение окна изображения

В процессе томографии получается сложная информация, выражающаяся в единицах шкалы Хаунсфилда. Обычные компьютерные мониторы улавливают серый цвет, состоящий из 256 оттенков. Чтобы показать остальные 1024 — требуется высокоточный медицинский прибор. При неспособности мониторов показывать полный черно-белый спектр изображений, создали специальную программу перерасчета серого градиента в нужном интервале.

Изображение в виде черно-белого спектра называется окном показателей денситометрии. Если его используют в широком интервале — видна консистенция структур в изучаемом диапазоне, но отличить органы, похожие по своей плотности невозможно. Задав окну параметры центра и ширины, сосредоточив его на нужном участке (окно легкого, мягких тканей) — теряются сведения о составе структур, выходящих за черту диапазона. Но в «окне» хорошо определяются ткани, одинаковые по твердости.

Чем больше изменяется центр и длина окна, тем сильнее становится контрастность изображения и яркость. В зависимости от поставленных целей, врач регулирует параметры настройки и исследует нужные участки тела пациента.

Средние денситометрические значения

Плотность тканей и веществ внешней среды по шкале Хаунсфилда
Данные о числах КТ по шкале Хаунсфилда некоторых органов человека и состояний окружающей среды во время компьютерной томографии:
Тип вещества плотность (HU)

  • Вода 0
  • Воздух — 1000
  • Кровь + 30 — + 70
  • Кости + 200 — + 2000 и выше
  • Жир от — 50 до – 150
  • Головной мозг +2 — +25
  • Мочевой пузырь +15 — +30
  • Сердце +20 — +50
  • Почка +35 — +55
  • Селезенка +40 — + 60
  • Надпочечник +5 — +15
  • Опухоль + 25 — + 70
  • Мышца + 30 — +80
  • Тромб +25 — + 80

Диапазон значений показателей КТ по шкале Хаунсфилда отображается на компьютере серой палитрой. При заданном параметре центра окна, показатель ниже установленного уровня высвечивается черным цветом, выше — белым.

КТ срезы

Для детального исследования заболеваний, в компьютерной томографии используется прибор МСКТ. Составляются таблицы, регистрирующие прохождения рентгеновских лучей через обследуемые части тела человека, отображенные в единицах шкалы Хаунсфилда.

Преимуществом аппарата МСКТ является способность делать снимки в виде послойных срезов, на которых врач может детально рассмотреть интересующий участок. Например, при мультиспиральной КТ головного мозга, на снимке видны мелкие подробности оптического выступа желудочка и масса других деталей, не различаемых на традиционном кт-томографе.

В течение 70 лет после открытия Рентгена медицинская радиология развивалась в основном по пути модернизации рентгеновского оборудования, усиливающих экранов, фотоматериалов, усилителей изображения и телевизионных систем.

Вместе с тем неизмененным оставался сам принцип получения диагностического изображения — генерация рентгеновского пучка и фиксация его изменений после прохождения через пациента на экране монитора, пленке или селеновой пластине.

Изобретение Г. Хаунсфилдом [G. Hounsfield] в начале семидесятых годов рентгеновской компьютерной томографии (РКТ) было воспринято многими как самый крупный шаг вперед в радиологии с момента открытия рентгеновских лучей. Г. Хаунсфилду вместе с А. Кормаком [A. Cormack] за это достижение в 1979 г. была присуждена Нобелевская премия.

Первые РКТ-аппараты были спроектированы только для обследования головы, однако вскоре появились и сканеры для всего тела. В настоящее время РКТ можно использовать для визуализации любой части тела.

Физические принципы и методология рентгеновской компьютерной томографии

Все методики визуализации с использованием рентгеновских лучей используют проекционные технологии (излучение проецируется на пленку после прохождения через массив тканей) и основываются на факте, что разные ткани ослабляют рентгеновские лучи в различной степени. Однако рентгеновская пленка не может четко отобразить различия и структурные детали тканей из-за их частичного перекрытия.

При традиционной томографии рентгеновская трубка и кассета с рентгеновской пленкой во время исследования перемещаются вместе таким образом, что проекция всех точек в интересующей плоскости остаются на пленке неподвижными. Поэтому точка 1, расположенная в данной плоскости, визуализируется четко, точка 2 находится вне этой плоскости и на изображении расплывается из-за нерезкости, вызванном перемещениями (рис. 8.3).


Рис. 8.3. Принципы получения изображения при традиционной томографии (объяснения в тексте).

Таким образом, традиционная томография может улучшить воспроизведение, но из-за уменьшения контрастного разрешения содержит «размытую» информацию от накладывающихся структур.

При РКТ воздействию рентгеновским лучам подвергаются только тонкие срезы ткани. Отсутствует мешающее наложение или размывание структур, расположенных вне выбранных срезов, то есть задача выделения слоя решается несравненно более эффективно, чем при обычной томографии. Последняя, однако, имеет и преимущества перед РКТ: обычные томограммы можно выполнять в сагитальной, фронтальной и промежуточных плоскостях, что недостижимо при стандартной рентгеновской компьютерной томографии.

В большинстве томографов используется сканирующий модуль (гентри), включающий базовую систему: рентгеновская трубка-детектор, вращательный двигатель и коллиматор. Трубка испускает узкий (колпимированный) пучок рентгеновских лучей, перпендикулярный длинной оси тела и охватывающий весь его диаметр, чем обеспечивается изображение в аксиальной (поперечной) плоскости, недоступной в рентгенодиагностике (рис 8.4).


Рис. 8.4. Принципы получения изображения при компьютерной томографии [Шотемор, 2001]. Показано четыре положения рентгеновской трубки (РТ) в процессе ее вращения вокруг исследуемого объекта (затенен). Из каждого положения можно получить новую проекцию аксиального слоя тела. На основе сотен таких проекций компьютер воссоздает изображение слоя. Выделение слоя достигается узким коллимированием (ограничением) пучка рентгеновского излучения.

Регулировкой коллимации можно менять ширину лучей (от 1 до 10 мм) и, соответственно, варьировать и толщину исследуемого среза ткани. Пропускаемый через пациента пучок рентгеновских лучей фиксируется не пленкой, а системой специальных детекторов в нескольких проекциях плоскости среза РКТ-детекторы примерно в 100 раз чувствительнее рентгеновской пленки при определении различий в интенсивности излучения.

В качестве детекторов используются либо кристаллы различных химических соединении (например, йодид натрия), либо полые камеры, наполненные сжатым ксеноном. Рентгеновские фотоны генерируют в детекторах электрические сигналы. Чем сильнее интенсивность достигшего детектора первичного луча, тем сильнее электрический сигнал. Последние вводятся в компьютер, где с помощью специальных программ реконструируется изображение данного слоя и результат сканирования выводится на монитор.

В течение относительно короткого периода существования метода РКТ в процессе технического совершенствования созданы разные типы томографов, которые принято называть «поколениями». Они различаются характеристиками источника рентгеновского излучения, числом, расположением и методикой взаимных перемещений сканера и детекторов.

Если томографы первого поколения содержали один источник и один детектор рентгеновского излучения, то в томографах пятого поколения обычно используется около 700 детекторов. Большое число детекторов (более 500) обеспечивает чрезвычайно быстрое получение информации, позволяя на некоторых моделях проводить исследования в реальном масштабе времени.

Реконструкция изображения осуществляется компьютером на основании оценки интенсивности рентгеновского излучения, регистрируемого каждым детектором в процессе сканирования. При этом возможно судить о степени поглощения (ослабления) лучей тканями, через которые проходит рентгеновский пучок.

Поскольку биологические ткани в зависимости от плотности и атомной массы в разной степени поглощают излучение, для каждой из них в норме и патологии присваивается числовое значение: число ослабления, или КТ-число. Значение его устанавливается по условной линейной шкале с диапазоном примерно от -1000 до +3000 (рис 8.5).


Рис. 8.5. Шкала единиц Хаунсфилда. Показано примерное расположение на шкале различных веществ (под «тканью» подразумеваются мягкие ткани с наименьшим содержанием жира и паренхиматозные органы). Контрольные точки -1000 HU — воздух, 0 HU — вода.

Единицу измерения КТ-ослабления называют единицей Хаунсфилда (HU). Томограф калибруется таким образом, чтобы значение ослабления воды равнялось 0, а воздуха — -1000 HU. Исходя из этого, для каждого органа выработан средний показатель HU.

Так, для костей он составляет от +200 до +1000 ед. HU, печени — от +40 до +75, почек — от +25 до +50, поджелудочной железы — от +10 до +50, селезенки — от +35 до +75, матки и предстательной железы — от + 35 до +70, крови — от +25 до +60. Ткани, обладающие меньшей чем у воды плотностью, характеризуются отрицательными значениями: жир от -50 до -150 ед. HU, легкие — от -100 до -1000.

Рентгеновская компьютерная томография позволяет дифференцировать отдельные органы и ткани по плотности в пределах до 0,2%. Минимальная величина патологического очага, определяемого с помощью РКТ, составляет 5-10 мм при условии, что КТ-число пораженной ткани отличается от такового здоровой на 10-15 ед. HU.

Необходимо отметить, однако, что точность измерений сильно страдает от несоответствий, вызываемых артефактами Поэтому для дифференциально-диагностических целей единицы HU следует использовать с осторожностью.

Хотя КТ-томограммы имеют значительно более высокое разрешение по контрастности по сравнению с традиционной рентгенографией, их пространственное разрешение ниже

Обычно толщина среза составляет 5-10 мм, но может равняться и 1 мм. Тонкие срезы хороши по пространственному разрешению, но для сохранения качества изображения они требуют более высокой дозы излучения.

Такие тонкие срезы непрактичны при исследовании больших анатомических областей, поскольку число срезов будет весьма большим, что повлечет увеличение получаемой пациентом общей дозы облучения. С увеличением количества срезов возрастает также и продолжительность обследования.

Таким образом, толщина среза — это компромисс между требованиями высокого пространственного разрешения, низкой дозой облучения и малой продолжительностью обследования.

Для повышения разрешающей способности компьютерной томографии (КТ) предложена методика «усиления» изображения. Она основана на внутривенном введении рентгеноконтрастных препаратов, в результате чего увеличивается денситометрическая разность между здоровой тканью и патологическим образованием вследствие их разного кровоснабжения.

Методика усиления широко используется в дифференциальной диагностике доброкачественных и злокачественных опухолей, для выявления опухоли и метастазов в печени, гемангиом, патологических образований головного мозга, средостения и малого таза.

Спиральная КТ — это недавно появившаяся новая концепция сканирования. Она значительно увеличила эффективность диагностики в плане скорости и качества исследования выбранной анатомической области. В процессе спиральной КТ стол постоянно линейно движется через первичный веерообразный луч с одновременным постоянным вращением трубки и массива детекторов.

Результатом является спиралевидное движение веерообразного луча через тело пациента Поэтому больший объем тканей (анатомическая область) может быть просканирована за один период задержки дыхания пациентом. Вместе с тем, обеспечивая получение тонких соприкасающихся «срезов» (расположенных по спирали), спиральная КТ может обеспечить создание высококачественных трехмерных реконструкций (3D).

В комбинации с внутривенным болюсным контрастированием можно реконструировать КТ-ангиограммы, воспроизводящие проекционные трехмерные изображения сосудистого русла, выполнять исследования больших анатомических зон в различные фазы прохождения контраста.

Электронно-лучевая томография — разновидность КТ с очень малым временем получения изображения одного среза, что дает возможность одновременно получать динамические изображения нескольких параллельных срезов без артефактов от дыхания, сокращений сердца и пульсации сосудов.

Это дает возможность изучать быстро протекающие процессы (например, перфузия сердца, головного мозга и др.). Метод идеально подходит для выполнения КТ-ангиографии.

В заключение необходимо указать, что на компьютерных томографах последних поколений при исследовании всего тела при максимальном количестве срезов, включая получение сагиттального изображения, суммарная поглощенная доза составляет 0,07 Гр.

Клиническое применение рентгеновской компьютерной томографии

Подготовка пациентов для обследования на компьютерном томографе:

1. РКТ головного мозга, органов грудной клетки, костной системы, головы и шеи специальной подготовки не требует.

2. Рентгеновская компьютерная томография органов брюшной полости: за 70-90 минут до обследования пациенту дают внутрь 200 мл 1,5% раствора йодсодержащего контрастного вещества (например, 5 мл 76% раствора верографина на 200 мл воды) и укладывают на правый бок. За 15 мин до исследования пациенту опять дают такую же дозу контрастного вещества.

3. После рентгеновского исследования желудочно-кишечного тракта РКТ органов брюшной полости может проводиться не ранее, чем через 7-10 суток.

4. РКТ органов малого таза: за 24 часа и за 60-70 мин до обследования пациенту дают 200 мл 2% раствора контрастного вещества, накануне — очистительная клизма. Женщинам во влагалище вводят тампон с контрастным веществом для обозначения шейки матки. Исследование производится с наполненным мочевым пузырем.

5. Для выявления конкрементов в почках рентгеновской компьютерной томографии проводится через 10 суток после внутривенной урографии.

6. Для всех категории больных в выписке из истории болезни или направлении за подписью врача должен быть указан аллергологический анамнез с результатами пробы на переносимость йодсодержащих контрастных веществ.

7. Беспокойные больные и дети до 5 лет направляются на РКТ с анестезиологом.

8. Пациенты свыше 100 кг на РКТ исследование не принимаются.

Современные томографы обеспечивают возможность уточненной диагностики заболеваний практически всех органов, тканей и систем человека.

Головной мозг

Наибольшее практическое значение рентгеновской компьютерной томографии имеет в диагностике внутримозговых опухолей, распознавание которых основывается на выявлении прямых и косвенных признаков. Прямым признаком опухоли является изменение плотности ткани (повышенная, пониженная и гетерогенная).

К вторичным признакам относятся «объемный» эффект (смещение структур мозга относительно срединной линии, сдавление и деформация боковых желудочков, блокада ликворопроводящих путей с развитием гидроцефалии) и отек мозга как вблизи опухоли, так и по периферии.

Методика «усиления» изображения в значительной степени повышает контрастность опухоли, особенно при наличии перифокального отека. Метастатические опухоли диагностируются с помощью КТ с наиболее высокой достоверностью по сравнению с другими методами исследования.

При этом весьма эффективно используется методика «усиления» изображения: метастатические очаги быстро и интенсивно накапливают контрастное вещество. Плотность метастазов в зависимости от их морфологических особенностей может быть выше, ниже и равной плотности мозга.

Однако даже в последнем случае они хорошо контрастируются на фоне локального отека. Кальцификация метастазов наблюдается весьма редко и лишь при остеогенной саркоме.

Опухоли гипофиза в большинстве случаев с высокой точностью диагностируются при КТ и более чем у 90% больных имеют непосредственное изображение. Плотность опухоли по сравнению с окружающим мозгом чаще повышена или же наблюдается чередование участков повышенной и пониженной плотности.

Весьма характерно отсутствие перифокального отека, а также повышение плотности опухоли на 10-30 ед. HU после введения контрастного вещества. Из непрямых признаков наиболее постоянным является изменение размеров и формы турецкого седла.

Органы грудной клетки

Органы брюшной полости

Печень

Злокачественные новообразования печени характеризуются снижением плотности до +25-35 ед. HU. В зависимости от типа роста, раковые опухоли отображаются в виде узла или множественных очагов, нередко сливающихся друг с другом и имеющих гомогенную или негомогенную структуру.

Независимо от типа роста, развитие опухоли постоянно сопровождается расширением внутрилеченочных протоков, хорошо дифференцирующихся на томограммах. Благодаря высокой разрешающей способности КТ удается диагностировать опухоли до 0,5-1 см.

Метастатические поражения печени, как и первичные опухоли, вызывают очаговое снижение плотности печеночной ткани. Форма метастазов чаще округлая, контуры четкие. Методика «усиления» изображения, как правило, улучшает их визуализацию.

Поджелудочная железа выявляется при РКТ у 80% больных. Исследования проводят на фоне контрастирования 12-перстной кишки 5% р-ром гастрографина. позволяющего дифференцировать головку железы. При злокачественном процессе определяются неравномерное увеличение и изменение структуры поджелудочной железы, исчезновение перипанкреатической жировой клетчатки, а также отек. Плотность опухолей обычно составляет от +20 до +40 ед. HU и возрастает после «усиления» изображения.

Забрюшинное пространство

Большое значение имеет КТ при злокачественных поражениях органов забрюшинного пространства и в первую очередь лимфатических узлов, а также внеорганных опухолей. Как первичные, так и метастатические опухоли характеризуются увеличением размеров лимфоузлов и их слиянием с образованием конгломератов, нередко вызывающих смещение сосудов и деформацию их контуров.

Особенно ценно КТ при злокачественных лимфомах. так как позволяет не только оценивать состояние практически всех групп лимфатических узлов, но и выявлять поражение других органов. КТ дополняет и уточняет УЗИ в распознавании различной патологии и внеорганных опухолей забрюшинного пространства.

Почки и надпочечники обычно хорошо дифференцируются на томограммах. Чувствительность КТ в диагностике опухолей почек или метастазов в них достигает 9з-99%. При РКТ надпочечников выявляются новообразования размерами до 1 см.

При неорганных опухолях КТ по диагностической эффективности превосходит все другие методы, которые в основном позволяют выявить лишь их косвенные признаки. С помощью КТ с высокой достоверностью определяются опухоли нервной, жировой, мышечной и соединительной тканей, а также кисты и новообразования, исходящие из кровеносных и лимфатических сосудов.

При этом чувствительность КТ достигает 95-98%, а специфичность — 70-75% . С помощью КТ диагностируют уже на самых ранних стадиях опухоли матки, яичников, предстательной железы, мочевого пузыря.

При опухолях органов малого таза КТ имеет некоторые методические особенности. Накануне исследования больному делают очистительную клизму. За 3-4 ч до томографии назначают прием внутрь 200 мл 0,5% р-ра урографина для контрастирования кишечника, а за 30 мин — 400-500 мл воды для наполнения мочевого пузыря.

Непосредственно перед исследованием целесообразно контрастировать прямую кишку 100-150 мл 0,5% р-ра верографина, а у женщин для маркировки шейки матки — во влагалище ввести смоченный урографином тампон. При исследовании мочевого пузыря в него после удаления мочи с помощью катетера вводят 100-200 мл кислорода.

Опорно-двигательный аппарат

Несмотря на то. что костно-суставной аппарат является традиционным объектом рутинной рентгенографии, применение КТ открыло принципиально новые возможности в изучении его патологических состояний.

КТ-признаки первично-злокачественных новообразований костей разнообразны и зависят от гистологического строения, локализации и распространенности опухоли. Наиболее постоянными из них являются деструкция костной ткани, периостальная реакция и наличие мягкотканного компонента.

Сопоставление результатов КТ с данными рентгенологического и радионуклидного исследований показывает, что она с большей точностью выявляет как внутрикостную распространенность опухоли, так и объем мягкотканного компонента. Необходимо отметить, что при определении распространенности злокачественного процесса КТ несколько уступает магнитно-резонансной томографии КТ имеет большое значение в диагностике костных метастазов.

Для дифференциальной диагностики первично-злокачественных и метастатических поражений кости применяется пункционная биопсия под контролем КТ с высокой точностью и без осложнении.

КТ в планировании лучевой терапии

Программное обеспечение современных томографов позволяет с высокой эффективностью проводить топографическое планирование лучевой терапии. При этом обеспечивается оптимальное распределение дозы в опухоли с минимальным повреждением окружающих тканей. Кроме того, КТ позволяет осуществлять контроль за эффективностью лечения в процессе и после его окончания.

Противопоказания к проведению рентгеновской компьютерной томографии:

1. Беременность всех сроков.
2. Агонирующее состояние.
3. Наличие меноррагий.
4. Психические расстройства в фазе обострения.
5. Клаустрофобия.
6 Наличие металлов в обследуемой зоне.

Доступность и стоимость

КТ у нас в стране еще недостаточно доступна и одновременно — дорогое исследование (цена его на Западе выражается в сотнях долларов). Учитывая экономические соображения, ограниченную обеспеченность КТ и связанную с ней лучевую нагрузку, остро стоит вопрос об ее рациональном использовании.

Угляница К.Н., Луд Н.Г., Угляница Н.К.

za-dolgoletie.ru

Мультиспиральная компьютерная томография головного мозга (шкала хаунсфилда, КТ-срезы)

Высокая информативность мультиспиральной компьютерной томографии головного мозга (КТ), одной из современных методик исследования патологии головного мозга, общеизвестна.

Так, чувствительность КТ в выявлении, например, менингиом составляет 96-98%, а специфичность — 93-97%. Лишь 4% менингиом остаются нераспознанными. В основном это новообразования, которые локализовались в задней черепной ямке и на дне передней и средней черепных ямок (при низкоплотных и плоских опухолях).

Нативная КТ больной с менингиомой
Определяется прямой признак (рентгеновское изменение плотности) и косвенный признак — масс-эффект, обусловленный как опухолью, так и перифокальными изменениями (перитуморозным отеком) мозгового вещества

Ошибка гистологического диагноза (менингиома — опухоль другой гистоструктуры) не превышает 4-7%. Наиболее часто гипердиагностика менингиом допускается при таких злокачественных опухолях, как лимфома, метастазы и глиобластома.

 

Шкала Хаунсфилда при компьютерной томографии

Анатомические образования головы и некоторых опухолей головного мозга в единицах шкалы Хаунсфилда (HU)
Объект Коэффициент поглощения
 Кость От +200 до +1000
 Сгусток крови  От +40 до +95
Серое мозговое вещество  От +36 до +46
Белое мозговое вещество  От +22 до +32
Кровь  + 12
Ликвор (спинномозговая жидкость)  От 0 до +8
Кожа  0
Жир  От -20 до -100
Воздух -1000
Краниофарингиомы  +62
Менингиомы  От +46 до +52
Глиомы От +34 до +54
Невриномы  + 15

Напомним, что в основе КТ лежит анализ способности разных тканей к поглощению рентгеновских лучей. В результате анализа определяется плотность исследуемых объектов. Величины плотности анатомических образований головы и некоторых опухолей головного мозга в единицах шкалы хаунсфилда при компьютерной томографии (мультиспиральной) головного мозга представлены в таблице выше.

 

КТ срезы

 БЛ — базальная линия
 1 — брегма
 2 — теменная кость
 3 — лобная кость
 4 — лобный синус
 5 — большое крыло клиновидной кости
 6 — дно передней черепной ямки
 7 — затылочная кость
 8 — передний клиновидный отросток
 9 — спинка турецкого седла, задний клиновидный отросток
 10 — турецкое седло
 11 — ячейка решетчатой кости
 12 — носовая кость
 13 — синус клиновидной кости (основная пазуха)
 14 — верхний край пирамидки височной кости
 15 — внутренний выступ затылочной кости
 16 — дно средней черепной ямки
 17 — скат
 18 — наружное слуховое отверстие
 19 — головка нижней челюсти
 20 — наружный выступ затылочной кости
 21 — дно задней черепной ямки
 22 — синус верхней челюсти
 23 — базион
 24 — сосцевидный отросток
 25 — передний носовой выступ
 26 — задний носовой выступ
 27 — передняя дуга атланта
 28 — зуб С2-позвонка
 29 — задняя дуга атланта
 30 — нижняя челюсть
 31 — остистый отросток С2-позвонка
 32 — лобный (передний) рог бокового желудочка
 33 — тело бокового желудочка
 34 — желудочковое отверстие
 35 — III желудочек
 36 — супрапинеальный выступ III желудочка
 37 — треугольник бокового желудочка
 38 — затылочный (задний) рог бокового желудочка
 39 — оптический выступ III желудочка
 40 — индибулярный выступ III желудочка
 41 — височный (нижний) рог бокового желудочка
 42 — водопровод мозга
 43 — IV желудочек

Схематически 14 КТ-срезы, получаемые при мультиспиральной компьютерной томографии головного мозга представлены в таблице и рисунке выше.

 

Похожие медицинские статьи

newvrach.ru

Шкала Хаунсфилда - это... Что такое Шкала Хаунсфилда?

Шкала Хаунсфилда — количественная шкала рентгеновской плотности (радиоденсивности).

Определение

Шкала единиц Хаунсфилда (денситометрических показателей, англ. HU) — шкала линейного ослабления излучения по отношению к дистиллированной воде, рентгеновская плотность которой была принята за 0 HU (при стандартных давлении и температуре). Для материала X с линейным коэффициентом ослабления , величина HU определяется по формуле

где и — линейные коэффициенты ослабления для воды и воздуха при стандартных условиях. Таким образом, одна единица Хаунсфилда соответствует 0,1 % разницы в ослаблении излучения между водой и воздухом, или приблизительно 0,1 % коэффициента ослабления воды, так как коэффициент ослабления воздуха практически равен нулю.

Стандарты, указанные выше, были выбраны для практического применения в компьютерной томографии живых организмов (в том числе человека), т.к. их анатомические структуры в значительной степени состоят из связанной воды.

Средние денситометрические показатели

Вещество HU
Воздух −1000
Жир −120
Вода 0
Мягкие ткани +40
Кости +400 и выше

История

Шкала была предложена сэром Годфри Ньюболдом Хаунсфилдом, одним из главных инженеров и разработчиков аксиальной компьютерной томографии. КТ-аппараты стали первыми устройствами, позволяющими детально визуализировать анатомию живых существ в трехмерном виде. С начала 1990-х годов развитие компьютерной технологии позволило разработать 3D-реконструирующее программное обеспечение. Для сравнения, обычные рентгеновские изображения отражают лишь проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень.


см. также Взаимодействие рентгеновского излучения с веществом

dic.academic.ru

шкала Хаунсфилд - Hounsfield scale

Шкала хаунсфилд ч aʊ п г ˌ е я л д / , названный в честь сэра Хаунсфилд , является количественной шкалой для описания радиоплотности . Он часто используется в КТ , где его значение также называется число КТ .

Определение

Блок Хаунсфилд (HU) Шкала представляет собой линейное преобразование исходного линейного измерения коэффициента затухания в одну , в котором радиоплотности из дистиллированной воды при нормальном давлении и температуре ( STP ) определяется как ноль единиц Хаунсфилда (HU), в то время как радиоплотности из воздуха при НТД определяется как -1000 HU. В воксел со средним линейным коэффициентом ослабления , соответствующее значение HU поэтому определяются по формуле: μ{\ Displaystyle \ му}

ЧАСUзнак равно1000×μ-μводыμводы-μвоздух{\ Displaystyle HU = 1000 \ раз {\ гидроразрыва {\ мю - \ мю _ {\ textrm {вода}}} {\ му _ {\ textrm {вода}} - \ му _ {\ textrm {воздух}}}} }

где и являются соответственно линейными коэффициентами ослабления воды и воздуха. μводы{\ Displaystyle \ мю _ {\ textrm {вода}}}μвоздух{\ Displaystyle \ мю _ {\ textrm {воздух}}}

Таким образом, изменение одной единицы Хаунсфилда (HU) представляет собой изменение в размере 0,1% от коэффициента ослабления воды, так как коэффициент ослабления воздуха близка к нулю.

Это определение томографов, которые калиброванные со ссылкой на воду.

обоснование

Указанные стандарты были выбраны , поскольку они являются общедоступными ссылками и подходят для ключа приложения , для которого вычисленного аксиальной томография была разработана: визуализации внутренней анатомии живых существ на основе организованных структур воды и в основном живет в воздухе, например , человек .

Значение в частях тела

Шкала хаунсфилд относится к медицинскому классу КТ , но не к коническому пучку компьютерной томографии (КЛКТ) сканирования.

Практическое применение этого при оценке опухолей, где, например, надпочечников опухоли с радиоплотности менее 10 HU довольно жирная по составу и почти наверняка доброкачественная аденома надпочечника .

Смотрите также

Рекомендации

Заметки

внешняя ссылка

<img src="https://en.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="">

ru.qwe.wiki

Изобретение компьютерной томографии. Хаунсфилд и Кормак

В начале 70-х годов Годфри Хаунсфилд строит свой первый коммерческий томограф. Метод назвали томографией от греческого «томо» - «разрез». В результате, как считал сам Хаунсфилд, получился аппарат, превосходивший существовавшие тогда рентгеновские устройства ровно в сто раз.  

Термин «Компьютерная томография» известен всем. Современная медицина широко использует этот метод в так называемых скрининговых тестах для исключения серьёзных диагнозов. Ещё его используют для экстренной диагностики при травмах, кровоизлияниях в мозг, для плановой диагностики, контроля проведенного лечения и для проведения серьезных медицинских вмешательств. О двух замечательных людях, подаривших человечеству этот превосходный метод, о «тысяче оттенков серого», об искусном английском инженере-экспериментаторе и о блестящем учёном-теоретике из знаменитого шотландского клана Маклаудов будет наш сегодняшний рассказ.

Получение послойных изображений (срезов) организма имеет в истории медицины давние предпосылки. Ещё великий русский хирург Пирогов, обучая студентов, разработал методику изучения взаиморасположения оперируемых органов. Он назвал её «топографической анатомией». Опорой методики были замороженные трупы, послойно разрезанные в различных анатомических плоскостях. Пирогов опубликовал атлас «Топографическая Анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Этот атлас стал провозвестником нового метода исследования организма, разработанного через сто лет. К счастью, современный метод получения послойных изображений разрезания исследуемых организмов на части не требует, он абсолютно безопасен.

Британский ученый-физик и инженер Годфри Ньюболд Хаунсфилд появился на свет в самом сердце старой доброй Англии, в графстве Ноттингемшир, родине легендарного Робина Гуда. В городе Ньюарке его отец служил инженером на сталелитейном заводе. Чтобы иметь возможность дышать свежим воздухом, он по окончании первой мировой войны приобрел небольшую ферму в отдалении от города. Будучи младшим ребенком в семье, маленький Годфри постоянно оставался один. Как правило, старшие дети не в восторге, когда им навязывают младшего братца. Годфри привык играть один, устроив на ферме что-то вроде своей штаб-квартиры. Находившаяся там сельхозтехника привлекала мальчика. Именно там работал фонтан, приводимый в действие мощным поршневым насосом с самодельным ацетиленовым мотором. Именно с крыши тамошнего амбара он рванул в небо на планере собственной разработки и постройки. И там, на ферме, юный Годфри спаял собственными руками приёмник и прослушивал грампластинки на патефоне оригинальной авторской конструкции.

Годфри Ньюболд Хаунсфилд

В грамматической школе Ньюарка, куда его определили родители, он с увлечением изучал физику и математику. Затем поступил в лондонский Сити-Гилд-колледж, который закончил в 1939 году. Вскоре началась война с нацистами, и Хаунсфилд был призван в Королевские ВВС. Он обучал курсантов радарной технике, служа инструктором при Королевском колледже в Южном Кенсингтоне. Имея несомненный дар преподавателя, Годфри Хаунсфилд читал лекции в Кренвелльской радиолокационной школе ВВС, где сконструировал массу полезных приборов и приспособлений, в том числе и широкоэкранный осциллограф.

Под конец войны он был отмечен специальной наградой, а в 1946 году его демобилизовали. Затем был электротехнический колледж Фарадея в Лондоне, где Годфри смог закончить полный курс благодаря полученной субсидии. В 1951 году его пригласили в компанию EMI, которая исследовала возможности применения электроники в мирных целях. Через семь лет группе специалистов, в которой он трудился, удалось создать транзисторную ЭВМ, первую во всей Англии! По сравнению с ламповыми образцами первые транзисторные ЭВМ не имели особых преимуществ. Но именно нашему герою удалось существенно увеличить производительность, быстродействие и мощность ЭВМ с помощью инновационного управления транзисторами.

Вскоре Хаунсфилд заинтересовался возможностями ЭВМ определять степень поглощения рентгеновских лучей биологическими тканями. Дело в том, что основа лучевой диагностики – рентгеновское излучение, проходящее сквозь исследуемые органы и попадающее затем на чувствительную плёнку. Разные ткани тела человека – мышцы, кости, жир и другие – имеют различную способность поглощать излучение, по-разному высвечиваясь на снимке. Кости видно четко, плотные ткани тоже можно разобрать, а вот опухоль от здоровой лёгочной ткани, к примеру, отличить было невозможно. А ведь внутренности человека – это логово многих болезней!

С этим несовершенством рентгеновского метода срочно нужно было что-то делать, и Годфри Хаунсфилд взялся за работу со свойственной ему основательностью. Будучи закоренелым холостяком, обременён семьёй он не был. Зато любил длительные пешие прогулки и разговоры с приятелями на шутливые отвлечённые темы, что помогало ему расслабиться. При этом Годфри обладал выраженным чувством юмора и, по свидетельству его друзей, завораживающе играл на фортепиано.

Примерно в те же годы специалист по медицинской физике Аллан Кормак, работавший в Университете Тафтса (Массачусетс), создал математическую модель поглощения рентгеновских лучей биологическими тканями. Его способ измерения заключался в постоянном контроле тонкого пучка рентгеновского излучения, проходящего через тело под различными углами, путём непрерывного мониторинга. Поскольку ткань зондировалась отовсюду, каждая исследуемая часть поглощала лучи индивидуально, без наслоений друг на друга и сливания в неразличимые пятна. Как кочан капусты, который разбирают по листьям или, к примеру, «раздевают» луковицу. На бумаге все это выглядело очень красиво, а вот на деле... Опубликованная Кормаком работа не заинтересовала никого, поскольку для такого сканирования нужны были мощные компьютеры, способные проводить быстрые расчеты. Способ был лабораторным, годным для теоретических, моделируемых ситуаций, а не для реальной диагностики. Кормак это прекрасно понимал, но инженером-практиком он не был, его публикации мало кому были интересны.

Аллан Маклауд Кормак был настоящим шотландцем из рода Маклаудов, но умением рубить головы не владел, так как был потомком этого знаменитого рода по женской, а не по мужской линии. Перед первой мировой войной его родители переехали в ЮАР из Шотландии. У его отца, инженера Джорджа Кормака и Амелии Маклауд, его матушки, было трое детей, из которых наш герой был младшим. Всё наше повествование сегодня - о младших сыновьях, и как можно убедиться, младшему сыну не всегда достаётся лишь кот, как герою сказки Шарля Перро, или оранжевая лошадь, как д’Артаньяну. Отличные мозги – вот что было у обоих наших героев! В двенадцать лет отец Аллана скончался, и семья переехала в Кейптаун. Юный Аллан учился великолепно, обожал физику, астрономию и математику. Был и прекрасным спортсменом, играл в теннис, участвовал в любительских спектаклях.

Аллан Маклауд Кормак

Несмотря на все красоты Южного Креста и других созвездий, глядящих с близкого африканского неба, молодой Кормак решил, что астрономия не блещет материальными перспективами, и поступил в Кейптаунский университет для изучения электротехники. Через несколько семестров он понял, что физика ему все-таки ближе, и в 1944 году стал бакалавром, а в 1945 – магистром физики. Он едет в Англию, становится стажёром-исследователем в знаменитой Кавендишской лаборатории. Под руководством знаменитого Отто Фриша он изучает свойства радиоактивного гелия и посещает лекции Поля Дирака по квантовой механике. Возвратившись в Африку, он работает преподавателем на кафедре физики Кейптаунского Университета, параллельно занимаясь радиоизотопами в госпитале Гроте-Шур.

Кормак год работает на циклотроне Гарвардского Университета в городе Кембридже (штат Массачусетс). К тому времени он уже женат на американской студентке Барби Сиви, к которой пристал прямо в университетской аудитории и потащил на свидание, когда работал в Англии у Фриша. Большой любитель музыки и прекрасный альпинист, он мгновенно завоевал сердце американки, выводя её на длительные прогулки и посещая с ней концерты известных исполнителей. Публикация статей об открытии нового метода ренгеновского сканирования успеха ему не принесла. Исследователи Т. Уоллес и Дж. Торнквил полагают, что причиной могло быть то, что все диаграммы и таблицы статей были выполнены в виде трудно понимаемых графиков, а не картинок. Затем Кормак едет в Массачусетс и работает в Университете Тафта. Он становится сначала адъюнкт-профессором, а затем и полным профессором физики, с 1968 по 1976 годы руководит кафедрой физики.

В начале 70-х годов Годфри Ньюболд Хаунсфилд строит свой первый коммерческий томограф. Метод назвали томографией от греческого «томо» - «разрез». Как и все, что создано инженерами, метод Хаунсфилда был намного практичней и удобней, чем у Кормака, и учитывал возможности тогдашней техники и удобство использования. В результате, как считал сам Хаунсфилд, получился аппарат, превосходивший существовавшие тогда рентгеновские устройства ровно в сто раз.  Возможности современных томографов по сравнению с первым EMICTT1000 – это небо и земля. Сегодня чувствительность компьютерных томографов – более 1000 «оттенков серого цвета»! Скорость исследования возросла на порядки. В 1979 году Кормаку и Хаунсфилду присудили Нобелевскую премию физиологии и медицины с формулировкой: «За разработку компьютерной томографии».

После успеха с созданием томографа Годфри Ньюболд Хаунсфилд много занимался физикой и техникой, нисколько не заинтересовавшись биологией. Умер сэр Годфри, командор ордена Британской Короны, на своей родине в Ньюарке в возрасте 84 лет.

Аллан Маклауд Кормак активно участвовал в общественной жизни, работал редактором томографического журнала. Жена родила ему двух дочерей. Профессор много читал, любил плавание, греблю в лодке. Скончался Аллен Маклауд Кормак в США в возрасте 64 лет. Маловато для Маклаудов, но что сделать – материнская линия!

ihospital.ru

Годфри Хаунсфилд: «человек, который в одиночку изменил медицину»: med_history — LiveJournal

Он стал «отцом» послойного сечения живых тканей с помощью рентгеновских лучей, позволил врачам заглянуть внутрь человека, подробно рассмотреть структуры органов и создать единую систему по которой рассчитывается плотность ткани (подробнее о методе КТ — в нашей отдельной статье). Он посвятил себя науке без остатка, так и не обзаведшись семьей, и объединил в своей профессии радиофизику с музыкой. Гениальный инженер и увлеченный радиотехник, создатель первых компьютеров, первого компьютерного томографа и нобелевский лауреат по физиологии или медицине 1979 года. 28 августа минуло 99 лет с о дня рождения Годфри Хаунсфилда.

Годфри Хаунсфилд


Годфри Ньюболд Хаунсфилд родился в маленькой деревеньке в Ноттингемшире (графство в центральных районах Великобритании). Семья обитала на просторной ферме, которую купил глава семейства сразу после Первой мировой войны для своих пятерых детей, поэтому простора для игр и творчества хватало. Годфри оказался самым поздним ребенком, сильно отстающим от своих двух братьев и двух сестер по возрасту, и поскольку интересы были разные, играли дети в разные игры, то юный инженер постоянно оставался один.

Однако, судя по воспоминаниям из автобиографии, его это нисколько не смущало, а даже наоборот – оставляло массу времени для опытов и всякого рода испытаний.

«Период между моими одиннадцатым и восемнадцатым годами остается самым ярким в моей памяти, потому что это было время моих первых попыток экспериментов, которые никогда бы не получилось сделать, живи я в городе. В деревне было множество развлечений, не ощущалось никакого давления со стороны братьев или сестер, чтобы присоединиться к игре в мяч или пойти в кино, и я легко мог проверить любую интересную идею, которая приходила мне на ум», – пишет Хаунсфилд.

Еще совсем юного Годфри крайне интересовала техника, которая стояла в сарае на заднем дворе фермы: молотилки, машины для связки снопов сена, генераторы. Он стремился разобраться, как работает каждая деталь, что приводит их в движение и чем это движение осуществляется. Но он не только разбирался – он применял свои знания на практике и пропадал в сарае сутками, работая над очередной электронной штуковиной.

Так появились разные виды электрических записывающих машин, планер, с помощью которого изобретатель постигал физику полета, даже чуть не угробивший его самодельный флайборд из смоляной бочки с водой и ацетилена. Мальчику было интересно, насколько высоко сможет поднять бочку струя воды. Тогда ему казалось, что абсолютный рекорд высоты, который ему удалось поставить, оказался на отметке в 1000 футов (около 305 метров), что, конечно, вряд ли может быть правдой.

Из-за тяги Годфри ко всему техническому гуманитарные дисциплины ему давались крайне плохо. В отличие от физики с математикой, он не любил языки, историю, обществознание и прочее, что в Магнусской школе грамматики в Ньюарке так старательно пытались ему привить. Тем не менее он все-таки научился рассуждать, что в жизни впоследствии ему сильно пригодилось.

По окончании школы молодой Хаунсфилд не сразу приступил к дальнейшему обучению, а пошел волонтером в Королевские военно-воздушные силы, поскольку наступала Вторая мировая война, в обществе вовсю обсуждались новинки военной отрасли, в том числе в авиации, и это юношу, помешанному на технике, полностью затянуло.

Там он постиг основы электроники и радиотехники, с жадностью накинувшись на всю кипу литературы, которая только была в доступе ВВС Британии. Эта тяга помогла ему отлично сдать итоговый тест, и его без лишних вопросов и сомнений забрали в Крэнвеллскую военно-воздушную радиолокационную школу, причем, в качестве преподавателя-инструктора. Там он в свободное время «развлекался» тем, что проходил обучение и в итоге сдал экзамен по радиокоммуникациям, занимался созданием широкоэкранного осциллографа и демонстрационного оборудования в качестве обучающих пособий.

Все это не осталось незамеченным для лиц высокого ранга, которые присматривались к молодым и перспективным кадрам. Благодаря ходатайству одного из таких, вице-маршала Британской авиации Джона Реджинальда Кэссиди (John Reginald Cassidy), Хаунсфилд получил грант на обучение в электротехническом инженерном колледже Фарадея в Лондоне – одном из лучших и новаторских для того времени технических институтов. Его особенность состояла в том, что тогда он был первым специализированным колледжем, обеспечивающим университетское образование (год основания – 1890-й), причем, еще до распространения инженерных факультетов. К тому же там впервые начали внедрять так называемые сэндвич-курсы, сочетающие в себе теоретическую базу с ее безотлагательным практическим применением.

Джон Кессиди


Еще во время работы в британских ВВС Хаунсфилда привлекли электронные вычислительные механизмы, в том числе компьютеры, которые в то время еще только покоились в яслях истории. Поэтому, получив элитный диплом Фарадейского колледжа, он в 1949 году подал резюме в компанию EMI (Electric and Musical Industries, также известные как EMI Records Ltd.), куда его с большой охотой взяли. Компания в то время занималась исследованиями в области электроники для коммерческого использования.

Некоторое время он занимался разработкой системы радиоуправления для оружия, руководил небольшой проектной лабораторией, но с середины 50-х плотно приступил к созданию компьютера на основе транзисторов, которые сам же и усовершенствовал. Он внедрил в них магнитный сердечник, смог добиться, чтобы они управлялись магнитным полем, и таким образом увеличил скорость обработки информации в разы, что в итоге вылилось в первый полностью транзисторный и доступный для продажи компьютер EMIDEC 1100.

Тем не менее техника развивалась стремительно, а идеи по совершенствованию, которые далее выдвигал Хаунсфилд, оказывались коммерчески не выгодными. Он решил оставить проект и на некоторое время пустить свои мысли в свободное плавание. Это оказалось верным решением, и в 1967 году к нему пришло то самое, чему можно посвятить всю оставшуюся жизнь – идея об автоматическом распознавании образов, основанных на степени поглощения рентгеновских лучей биологическими тканями. В дальнейшем она вылилась в EMI-сканер и методику вычисления в томографии, и до 1976 года этот проект поглотил исследователя полностью.

Первый прототип томографа


Интересно, что метод математического анализа данных для определения того, как биологические ткани поглощают рентгеновские лучи, разработал Алан Маклеод Кормак еще в конце 50-х годов. Он основывался на измерениях поглощения тонкого рентгеновского пучка, проходящего через тело под различными углами, что давало возможность получить тонкий поперечный срез. Поскольку пучок зондировал определенный участок с многих точек, полученная информация отображала особенности поглощения каждой отдельной части этого участка. При обычном рентгеновском исследовании определяется лишь суммарное поглощение луча, достигающего пленки, а изображения мягких тканей и костных структур при этом накладываются друг на друга. Метод Кормака же позволял воссоздать изображение внутренних деталей строения.

Алан Кормак


Однако, проблема была в том, что его алгоритмы оставались еще слишком сырыми и чисто лабораторными, поскольку в то время не существовало настолько мощных и быстрых компьютеров, которым бы удавалось обрабатывать такой массив данных. Поэтому исследование длилось крайне долго. Опубликованная работа также из-за сложности не вызвала у научной общественности особого интереса и энтузиазма.

Другое дело – Хаунсфилд. Он независимо от Кормака стал разрабатывать свой проект и придумал схожую систему, в которой тонкий линейный пучок гамма-излучения кобальта-60 пускался сквозь муляж тела и с противоположной стороны «отлавливался» счетчиком Гейгера. Забавно, что первый муляж тела состоял лишь из алюминиевых цилиндров в деревянной коробке, а его усложненная версия головы – из алюминиевого «черепа» с пластиком в качестве мозге и алюминиевых дисков в качестве опухолей.

Рисунок руки Хаунсфилда: прототип томографа. Credit: Wikimedia Commons


Эксперименты проходили крайне успешно. Разработанная инженером атематическая модель была чуть проще кормаковской и уже использовала большой компьютер для обработки данных. Усовершенствовали и рентгеновскую трубку: если раньше из-за низкоинтенсивного источника гамма-лучей, требующего длительных экспозиций, время для сканирования составляло 9 дней, то в тот момент оно снизилось до 9 часов.

Хаунсфилд с улыбкой вспоминает, как он через весь Лондон в автобусе вез в сумке свежий мозг теленка для того, чтобы посмотреть, как будет регистрироваться и обрабатываться сигнал от живых тканей. Изображения получались удачные, а контрастность снимков была такой четкой, что позволяла оценить ткани головного мозга и других органов. Изобретатель проверял прототип томографа на препаратах мозга (позаимствованных в анатомическом музее), свежем мозге и других органах, даже использовал в качестве подопытного себя самого.

\

Первая томограмма препарата мозга


Тем не менее оставалось проверить, насколько хорошо машина сможет отличать норму от патологии. Для этого в 1971 году в госпитале Аткинсона Морли в Уимблдоне сконструировали первый клинический компьютерный томограф, и началось исследование больных с опухолями и другими заболеваниями головного мозга. В 1972 году появилась первая сканограмма головного мозга женщины с подозрением на его поражение, и полученное изображение отчетливо показало наличие темной округлой кисты.

Первая КТ пациента


Постепенно смонтировали более крупные и быстрые сканеры (в том числе КТ-сканер всего тела, созданный в 1975 году), в которых снижалось время сканирования, а в апреле 1972 года ЕМI объявила о начале производства первого коммерческого компьютерного томографа – ЕМIСТ-1000. И с этого момента в медицине началась совершенно новая эра точной прижизненной диагностики.

Кстати, нельзя не сказать и о роли рок-музыки в появлении томографии. В компании было много исследований, но главный их профит – это звукозапись. И в начале 1960-х EMI вытащила свой счастливый билет: контракт с The Beatles.

Для того, чтобы анализировать изображения, исходя из плотности тканей, Хаунсфилд придумал специальную шкалу ослабления рентгеновского излучения, согласно которой 0 единиц соответствовало чистой дистиллированной шкале, -1000 – плотности воздуха, +1000 – плотности кости, а сам диапазон значений колебался от -1024 до +3071. Таким образом, воздух на томограммах выглядит абсолютно черным, а кость – белой, поскольку костные структуры очень хорошо поглощают рентгеновские лучи.

В 1979 году Хаунсфилд и Кормак, как как человек, который первым придумал алгоритм, получили Нобелевскую премию по физиологии и медицине «за разработку компьютерной томографии».  Нобелевский комитет отметил: «Когда метод был введен в медицинскую практику шесть лет назад, быстро стало очевидно, что это означало что-то революционно новое, с большими последствиями для рентгеновской диагностики и медицинскими дисциплинами, которые используют ее».

Хаунсфилд ушел в отставку из EMI в 1984 году: он не сошелся с руководством и характером, и потом финансово. Зато признанием он был не обделён – и речь не только о Нобелевской премии (наш герой представляет собой удивительную историю, когда премию по физиологии или медицине получил инженер). Еще смешнее оказалось с избранием Хаунсфилда в члены Королевского Общества. Оказалось, что у Нобелевского лауреата слишком мало научных трудов, чтобы просто представить его на избрание. И – уникальный случай – в качестве «статей» были представлены изобретения.

med-history.livejournal.com

Клиническая компьютерная ТОМОГРАФИЯ | #06/98

Два десятка лет назад человечество получило возможность заглянуть внутрь живого организма и составить о нем целостное впечатление

Всовременной медицине наметилась тенденция к технизации процесса обследования больного, когда прессинг информации, добытой инструментальным путем, ставит под сомнение выводы врача, сделанные им на основании личного опыта и базирующиеся на традиционных методах диагностики. Вот под этим углом зрения, не преувеличивая и не умаляя достоинств метода, хотелось бы поговорить на тему, что такое компьютерная томография (КТ), обсудить ее роль в современном диагностическом процессе и возможные точки ее приложения.

Рисунок 1. Компьютерная томограмма брюшной полости. Уровень ворот левой почки, в которой выявляется объемное образование с четкими ровными контурами, гомогенной структуры, низкой плотности

Отцами-основателями КТ являются математик Кормак, теоретически обосновавший возможность получения информации и построения КТ-изображения, и инженер-практик Хаунсфилд, реализовавший идею на практике. В марте 1973 года впервые была получена картина внутренней структуры вещества головного мозга с указанием локализации зоны поражения. Это сейчас звучит буднично, но 25 лет назад впервые в мире человечество получило возможность заглянуть внутрь живого мозга и судить о нарушениях в нем не по косвенным признакам — изменению структуры костей черепа и ангиоархитектоники сосудов мозга, а изучать морфологические изменения самого субстрата, дифференцировать серое и белое вещество! Идея и ее материальное воплощение покорили мир. И вот уже на потребителей посыпались компьютерные томографы I, II, III, IV поколений. Последние два поколения отличаются друг от друга характером взаимоотношения детекторов, принимающих рентгеновское излучение, прошедшее через поперечную плоскость человеческого тела, и рентгеновской трубки, вращающейся вокруг оси пациента.

Рисунок 2. Тот же больной. Выполнено контрастное усиление (артериальная фаза), хорошо дифференцируется кортикальный слой почек, образование не контрастируется — киста

Большинство современных установок — это аппараты третьего поколения. И если на аппаратах первого поколения процесс снятия информации и получения “картинки” занимал минуты, на аппаратах второго — десятки секунд, то на томографах используемых с 80-х годов, счет идет на секунды. Причем последние восемь лет, когда в обиход вошли спиральные компьютерные томографы и электронно-лучевые КТ, речь идет о секундах и их долях.

Итак, диагносты получили возможность посмотреть на объект исследования в новой, поперечной проекции, ранее доступной для изучения только анатомам. В историческом плане существует хорошо известный аналог компьютерной томографии — “пироговские срезы” замороженного трупа, рисунки которого идентичны качественным КТ-изображениям.

Запросы неврологии и нейрохирургии успешно разрешались с помощью этого нового, нетрадиционного метода диагностики. Нейрорадиология (по западной терминологии) внесла огромный вклад в изучение и понимание течения многих заболеваний ЦНС. Надо сказать, что вначале даже существовали специальные аппараты — компьютерные томографы для исследования головы.

Информация, получаемая с помощью КТ, абсолютно объективна и измеряется в единицах компьютерной томографии (ед. Хаунсфилда)

Технический прогресс привел к совершенствованию аппаратуры: появились более мощные, скоростные аппараты, приспособленные для исследования всего тела пациента. Диагностика заболеваний легких, органов брюшной полости стала второй, наиболее распространенной областью использования КТ. При исследовании органов грудной клетки стало возможным дифференцировать структуры средостения и корней легких, изучать тончайшие отклонения в структуре “воздушной” ткани легкого (выявлять буллы, нежные тени фиброза и др.). И если в классической рентгенологии семиотика заболеваний легких изучена и апробирована на миллионах исследований на протяжении десятилетий, и КТ дополнила и обогатила классическую рентгеносемиотику заболеваний, то при заболеваниях брюшной полости внутренняя структура паренхиматозных органов, таких как печень, поджелудочная железа, селезенка, почки и др., стала “откровением” при прижизненном их исследовании у пациента, не подвергающегося диагностическим лапаротомиям. Сейчас врачи спорят о том, что лучше — ультразвуковые методы исследования, КТ или магнитно-резонансная томография. Но всего лишь два десятка лет назад, когда в результате компьютерно-томографического исследования стало возможно получить цельное представление о структуре и взаимоотношении органов, это был действительно революционный шаг в неинвазивной диагностике заболеваний внутренних органов.

Рисунок 3. Тот же больной. Выполнена реконструкция изображения во фронтальной плоскости

На чем основана КТ? На способности различных органов и тканей (как здоровых, так и патологически измененных) поглощать рентгеновское излучение. В свою очередь, ослабление рентгеновского излучения фиксируется специальными датчиками, сигнал от которых поступает для анализа в компьютер. В результате сложных математических расчетов пространственное взаимоотношение точек с различной способностью к поглощению рентгеновского излучения можно представить в виде математических таблиц, графиков, а еще более наглядно — в виде графической “картинки”. Чем с большего количества детекторов используется информация, тем выше ее качество. Такое изображение отличается от получаемого при прохождении через ткани ультразвукового сигнала тем, что не несет на себе отпечатка субъективизма, присущего УЗИ, при котором изображение одного и того же органа будет выглядеть по-разному даже в течение одной диагностической процедуры, в зависимости от положения датчика.

Рисунок 4. Реконструкция изображения в сагиттальной плоскости
Получаемая в результате КТ картина абсолютно объективна, ее возможно оценивать и изучать на мониторе прибора, фиксировать на бумаге либо рентгеновской пленке, проводить сравнения и сопоставления в течение какого-то периода времени, если мы имеем дело со сложными диагностическими случаями; наконец, эта информация объективна еще и по причине привнесения в нее некоего физического смысла — способность тканей поглощать рентгеновское излучение оценивается в единицах компьютерной томографии (наиболее широко известных как единицы Хаунсфилда). Это основополагающее свойство, которое роднит КТ скорее с физикой, оперирующей точными представлениями о явлении, нежели с рентгенологией, в основе которой лежит способность врача (исследователя) при трактовке явления с помощью своих чувств, эмоционального настроя передать информацию о сути выявленной патологии. Ведь ни для кого не секрет, что одно и то же изображение каждый из нас воспринимает субъективно, с учетом глубины понимания и собственно восприятия процесса, — вот почему рентгенологическому описанию доверяют лишь тогда, когда хорошо знают врача, а в остальных случаях предпочитают подкрепить информацию из описания рентгенологического исследования собственной трактовкой изображения области патологии и требуют от больного рентгеновские снимки. КТ объективна в этой части диагностического процесса — по заданной схеме можно выполнить набор измерений и получить объективную информацию, она не зависит от органов чувств исследователя, но существует сама по себе и обусловлена особенностями изучаемого процесса.
Рисунок 5. Трехмерная реконструкция почек. Хорошо определяется взаимоотношение кисты (на переднем плане) и непораженной паренхимы
Каждое достижение в диагностике порождает своего рода эйфорию, от его использования ожидают небывалого эффекта. На практике сложный диагностический процесс сопровождается ограничениями самого метода. Так, очень скоро врачи столкнулись с проблемой дифференциации органов и тканей, имеющих равную или очень близкую плотность по шкале Хаунсфилда. Особенно актуально это при диагностике метастазов в печень, а также при разграничении опухоли и непораженной паренхимы, например в поджелудочной железе. Проблему пытались решить путем диагностических биопсий, выполняемых под контролем КТ чрескожным доступом тонкими биопсийными иглами. Однако пунктировать образование малых размеров практически вслепую, лишь по ориентирам, полученным на томограмме, проблематично, поэтому методика пункционных вмешательств при КТ не получила широкого распространения. Во многом это обусловлено еще и тем, что в арсенале диагностов появились пункционные датчики ультразвуковых аппаратов, которые позволяют практически в режиме реального времени контролировать ход кончика пункционной иглы. Справедливости ради следует отметить, что методика диагностических и лечебных чрескожных вмешательств в последние годы переживает второе рождение; особенно эффективна она при использовании специальных приставок, позволяющих направлять под заданным углом пункционную иглу на заданное расстояние, а на некоторых моделях компьютерных томографов ее ход можно контролировать и ультразвуковым датчиком либо портативным рентгеновским аппаратом (Picker). Возможности инвазивных вмешательств под контролем КТ еще до конца не изучены, особую ценность методика имеет при вмешательствах на органах и костях таза, позвоночнике и т. д. Под контролем КТ сейчас проводят волоконно-оптические приборы и микрохирургические инструменты в поврежденные участки дисков позвонков и выполняют тончайшие операции. Таких примеров использования КТ, как метод контроля за выполнением хирургических вмешательств, можно привести много. Один из них — применение мобильных компьютерных томографов (Tomoscan M, Philips) в операционных во время хирургических вмешательств, когда, например, топография структур головного мозга после вскрытия черепной коробки и вмешательства на патологическом очаге резко меняется и во время операции требуется постоянная коррекция в оценке взаимоотношения анатомических структур.
Каждое новейшее открытие в физике или технике неминуемо находит воплощение в медицине; ярким примером тому может служить открытие Рентгена и блистательное его внедрение во врачебную практику. Компьютерную томографию (КТ) можно рассматривать как новый виток в развитии рентгенологии, в свою очередь принципы математической обработки при построении изображения при КТ легли в основу безлучевого метода исследования — магнитно-резонансной томографии

Диагностический процесс при КТ постоянно усложнялся в целях совершенствования получаемых результатов. Базисная особенность исследования — разграничение структур, отличающихся по плотности, была успешно использована при так называемом внутривенном контрастном усилении во время КТ-исследования. Действительно, те или иные органы, патологические и неизмененные структуры имеют приток крови разной степени выраженности, обусловленный различиями в типе кровоснабжения и его скорости. Знание особенностей контрастирования здоровых и пораженных тканей позволяет четко дифференцировать их границы и тем самым устанавливать истинное количество патологических образований, а знание особенностей КТ-картины патологических образований при контрастном усилении позволяет их дифференцировать, не прибегая даже к методам пункционной биопсии. Особое развитие контрастное усиление получило при использовании так называемой методики динамической КТ, когда на одном уровне делают несколько сканирований через определенные временные промежутки от начала введения контрастного вещества. С появлением спиральной КТ с интервалом между сканами 1 секунда компьютерную томографию с болюсным контрастным усилением можно рассматривать как метод визуализации сосудов, в том числе артериальных. Это роднит ее с цифровой субтракционной ангиографией, но в отличие от последней позволяет оценивать контрастированные сосуды в их взаимоотношении с органами либо их прохождение внутри здорового или патологически измененного органа. Наиболее значимые диагностические результаты достигаются при сравнении данных исследования в так называемую нативную фазу (до начала введения контрастного вещества) и двух фаз исследования после введения контрастного вещества (артериальная и венозная фазы). Естественно, что для получения достаточно протяженного болюса (“сгустка” концентрированного контрастного вещества в кровеносном русле) требуется большой объем рентгеноконтрастного вещества, которое бы легко переносилось пациентом и не вызывало аллергических реакций. Такими свойствами обладают самые эффективные современные неионные рентгеноконтрастные средства, например Ультравист-300 “Шеринг“, Омнипак-300 или Визипак-270 “Никомед-Амершам”. Диагностическая информация из поперечных срезов тела пациента может быть представлена в виде многоплоскостных либо объемных (трехмерных) реконструкций, которые позволяют наглядно оценить всю сложность анатомических взаимоотношений. Особенно эффективны для выполнения трехмерных реконструкций программы рабочих станций, позволяющие в полуавтоматическом режиме “шлифовать” поперечные срезы, убирая структуры, аналогичные по плотности, но заведомо не относящиеся к исследуемому объекту, например рабочая станция Easy Vision, Philips (рис. 1-5).

Компьютерные технологии шагнули так далеко, что сейчас предметом диагностического процесса становится так называемая “виртуальная” эндоскопия, при которой можно перемещаться внутри реконструированного объекта с точной координатной привязкой на поперечных срезах, что особенно важно при исследовании участков кишки, бронхов, протоков, находящихся за патологическим сужением, пройти которое реальному эндоскопу невозможно, а “виртуальному” под силу.

Направления клинического использования КТ постоянно множатся и сейчас. Например, многие ученые рассматривают “низкодозную” КТ как альтернативу флюороскопии при диагностике заболеваний легких и т. д. В этой статье мы лишь коснулись основных вопросов, связанных с возможностями клинического применения КТ. В последующих работах будут рассмотрены частные вопросы КТ-диагностики самых различных заболеваний.

www.lvrach.ru

Плотность печени норма в единицах хаунсфилда – Всё о болезнях печени

Сотни поставщиков везут лекарства от гепатита С из Индии в Россию, но только M-PHARMA поможет вам купить софосбувир и даклатасвир и при этом профессиональные консультанты будут отвечать на любые ваши вопросы на протяжении всей терапии.

ДЕШЕВЫЕ ЛЕКАРСТВА ОТ ГЕПАТИТА ССотни поставщиков везут лекарства от гепатита С из Индии в Россию, но только компания IMMCO поможет вам купить софосбувир и даклатасвир (а так же велпатасвир и ледипасвир) из Индии по самой выгодной цене и с индивидуальным подходом к каждому пациенту!

Визуализация печени при компьютерной томографии

Печень – наиболее крупный орган человеческого тела, визуализирующийся при компьютерной томографии в виде однородной структуры с плотностью (без контраста) в пределах +55…+70 единиц шкалы Хаунсфилда. Снижение плотности печени при КТ ниже +55 единиц свидетельствует о жировом гепатозе (инфильтрации ткани печении клетками жировой ткани), больше +70 единиц – о металлозах (отложение солей металлов в паренхиме – так, например, проявляется гемосидероз).

Наблюдения (КТ печени), демонстрирующие выраженную жировую инфильтрацию печеночной паренхимы до введения контраста (слева). Видно, что плотность паренхимы составляет всего лишь -8 единиц по шкале Хаунсфилда, в то время как в норме она должна быть не менее +55. На изображении посередине видно, что даже после введения контраста плотность паренхимы ненамного повысилась и составляет всего -4 HU. Сравните данные изображения с нормой (на крайнем правом скане печени).

В структуре печени принято различать две доли (основные) – правую и левую, а также т.н. хвостатую долю – меньших размеров. Для более точной локализации патологических очагов печень принято разделять на сегменты. Кровоснабжение печени осуществляется собственной печеночной артерией, являющейся ветвью чревного ствола, венозный отток осуществляется через печеночную вену в систему нижней полой вены. Кроме того, в воротах печени при КТ можно визуализировать еще один крупный сосуд, собирающий венозную кровь от желудка, толстого и тонкого кишечника, поджелудочной железы, селезенки – портальную вену. В норме ширина портальной вены при компьютерной томографии печени составляет 10-20 мм (столь большой разброс обусловлен в основном различиями в размерах тела). Необходимо также оценивать ширину селезеночной и верхней брыжеечной вен, которые формируют портальную вену, а также внимательно изучать их просвет на предмет наличия дефектов наполнения, обусловленных тромбами, а также патологических изменений просвета.

Контрастирование при компьютерной томографии печени. Стрелками синего цвета отмечены портальная и селезеночная вена.

Артериальные и венозные сосуды при КТ-ангиографии печени: слева цифрой 4 отмечена брюшная часть аорты, цифрой 5 – чревный ствол, 6 – печеночная артерия. Цифрами синего цвета отмечены вены: 1 – портальная, 2 – селезеночная, 7 – верхняя брыжеечная, 3 – нижняя полая.

Система портальной вены (слева) и сосуды чревного ствола (справа). Цифрой 1 слева отмечена портальная вена, 2 – селезеночная вена, 3 – верхняя брыжеечная вена, справа цифрами красного цвета отмечены артериальные сосуды печени (КТ-ангиография): 1 – чревный ствол, 2 – печеночная артерия, 3 – селезеночная артерия, 4 – брюшной отдел аорты.

МРТ печени (для сравнения с КТ и рентгенограммами).

 Еще один пример визуализации печени при МРТ.

 Печень на рентгенограммах. При рентгенографии можно оценить лишь края печени, ориентировочно – ее размер (как на изображении слева), а также наличие объектов высокой плотности (как на рентгенограмме печени справа – кружком выделены металлические скобки после эндоскопической холецистэктомии).

Еще один момент, на который нужно обращать внимание при расшифровке компьютерной томографии печени – наличие лимфатических узлов с измененной структурой и формой в ее воротах, что может наблюдаться при гематогенном метастазировании опухолей желудочно-кишечного тракта в печень. Нужно также тщательно оценивать структуру печени, выделяя отличные по плотности участки в ее паренхиме – кистозного или солидного характера.

Контрастирование печени при КТ

КТ печени с внутривенным контрастированием позволяет визуализировать артериальные и венозные сосуды печени, выявить и дифференцировать объемные образования в ее паренхиме, визуализировать их структуру. В раннюю артериальную фазу контрастируется чревный ствол и его ветви, в т. ч. печеночная артерия – можно оценить ширину ее просвета (наличие внутрипросветных тромбов), ход, извитость, аномальные артериально-венозные дренажи и т. д. В фазу портальной вены хорошо визуализируется v. porta и формирующие ее сосуды, в отсроченную фазу можно увидеть образования в паренхиме печени, хорошо накапливающие и длительно удерживающие контраст.

 Характерный вид метастазов в печень при КТ. Стрелками отмечены множественные гиподенсные (темные) очаги округлой формы. У пациента – рак прямой кишки с гематогенным метастазированием в печень по системе портальной вены.

У пациентки – кистозная перестройка печени. КТ. Визуализируются множественные гиподенсные очаги печени во всех сегментах, сливного характера, различных размеров. Длительно существующее состояние (данные очаги выявлены в печени уже более 10 лет назад и никак себя не проявляют).

 Пример аэробилии на КТ печени – в печеночных желчных ходах визуализируется газ, попавший туда в результате оперативного вмешательства (холецистэктомии).

 Изображения демонстрируют цирроз печени и асцит. КТ. Обратите внимание на край печени, отмеченный стрелками (оцените размеры печени – она лишь слегка больше селезенки). Жидкость по обоим флангам брюшной полости отмечена звездочкой «*».

Так, для метастазов характерно усиление по типу «кольца» вокруг гиподенсного очага (распада), но могут встречаться и другие варианты – равномерное накопление контраста очагом, либо частичное накопление (в центре, по периферии, на каком-либо отдельном участке). Для гемангиом характерно выраженное усиление в артериальную фазу, а в венозную – крайне быстрое снижение плотности до первоначальных значений. Первичные опухоли (гепатоцеллюлярный рак) выглядят в виде солидного (либо субсолидного) узла – с множественными просветлениями в случае наличия распада, накапливают контраст чаще всего неравномерно – при больших размерах, равномерно – при малых. Фиброзная нодулярная гиперплазия также проявляется накоплением контраста в очаге, имеющем характерный внешний вид.

Пример первичной опухоли печени. КТ. Слева – до контрастирования, справа – после. Визуализируется крупный неправильной формы очаг печени с неоднородной структурой, что становится отчетливо различимо после контрастного усиления (справа).


Source: secondopinions.ru

Самое интересное:


Мы в соц.сетях:



Source: gepasoft.ru

ufolabs.ru


Смотрите также

© Copyright Tomo-tomo.ru
Карта сайта, XML.

Приём ведут профессора, доценты и ассистенты

кафедры лучевой диагностики и новых медицинских технологий

Института повышения квалификации ФМБА России