Расположение

Москва, ул.Гамалеи, д.15

м. Щукинская, авт/марш. №100 и №681
до ост. "Клиническая больница №86"

Пристройка к поликлинике 1 этаж
Отделение лучевой диагностики

Эл. почта:
[email protected]

 
  • Под контролем
    Под контролем

    Федерального
    медико-биологического
    агентства
  • Профессиональные снимки
    Профессиональные снимки

    на современном томографе
  • Удобное расположение
    Удобное расположение

    рядом с метро Щукинская
  • МРТ коленного сустава 4000 руб
    МРТ коленного сустава 4500 руб.
  • Предварительная запись
    Предварительная запись,
    что исключает ожидание в очереди
  • Возможность получения заключения на CD
    Возможность получения
    результатов на CD

Записаться
на приём

+7 (495) 942-38-23 (МРТ коленного сустава, денситометрия)

+7 (903) 545-45-60 (МРТ остальных зон)

+7 (903) 545-45-65 (КТ)

С 9.00 до 15.00

По рабочим дням

 


 

Компьютерная томография понятие


Компьютерная томография — Википедия. Что такое Компьютерная томография

Компьютерный томограф

Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, — разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1].

В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии. В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратного представления в различных анатомических плоскостях (проекциях) однократно полученных «сырых» КТ-данных, а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

В нейрохирургии до внедрения компьютерной томографии применялись предложенные в 1918—1919 годах Уолтером Денди вентрикуло- и пневмоэнцефалография. Пневмоэнцефалография впервые позволила нейрохирургам проводить визуализацию внутричерепных новообразований с помощью рентгеновских лучей. Они проводились путём введения воздуха либо непосредственно в желудочковую систему мозга (вентрикулография) либо через поясничный прокол в субарахноидальное пространство (пневмоэнцефалография). Проведение вентрикулографии, предложенное Денди в 1918 году, имело свои ограничения, так как требовало наложения с диагностической целью фрезевого отверстия и вентрикулопункции. Пневмоэнцефалография, описанная в 1919 году, была менее инвазивным методом и широко использовалась для диагностики внутричерепных образований. Однако, как вентрикуло-, так и пневмоэнцефалография представляли из себя инвазивные методы диагностики, которые сопровождались появлением у больных интенсивных головных болей, рвоты, несли целый ряд рисков. Поэтому с внедрением компьютерной томографии они перестали применяться в клинической практике. Эти методы были заменены более безопасными КТ-вентрикулографией и КТ-цистернографией, применяемыми значительно реже, по строгим показаниям[2], наряду с широко используемой бесконтрастной компьютерной томографией головного мозга.

Шкала Хаунсфилда

Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей, англ. Hounsfield units»), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет от −1024 до +3071, то есть 4096 чисел ослабления. Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные — мягким тканям, костной ткани и более плотному веществу (металл). В практическом применении измеренные показатели ослабления могут несколько отличаться на разных аппаратах.

Следует отметить, что «рентгеновская плотность» — усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды).

Изменение окна изображения

Обычный компьютерный монитор способен отображать до 256 оттенков серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 оттенков. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно.

Средние денситометрические показатели

КТ-снимок грудной клетки в легочном и мягкотканном окнах (на изображениях указаны параметры центра и ширины окна)
Вещество HU
Воздух −1000
Жир −120
Вода 1
Мягкие ткани +40
Кости +400 и выше

Развитие современного компьютерного томографа

Современный компьютерный томограф фирмы Siemens Medical Solutions

Современный компьютерный томограф представляет собой сложный программно-технический комплекс. Механические узлы и детали выполнены с высочайшей точностью. Для регистрации прошедшего через среду рентгеновского излучения используются сверхчувствительные детекторы. Конструкция и материалы, применяемые при их изготовлении, постоянно совершенствуются. При изготовлении компьютерного томографа предъявляются самые жесткие требования к рентгеновским излучателям. Неотъемлемой частью аппарата является обширный пакет программного обеспечения, позволяющий проводить весь спектр компьютерно-томографических исследований (КТ-исследований) с оптимальными параметрами, проводить последующую обработку и анализ КТ-изображений. Как правило, стандартный пакет программного обеспечения может быть значительно расширен с помощью узкоспециализированных программ, учитывающих особенности сферы применения каждого конкретного аппарата.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений. Так, например, для получения томограммы размером 200×200 пикселей система включает 40 000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельных вычислениях.

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ-томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 году. КТ-аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Каждый слой обрабатывался около 4 минут.

Во 2-м поколении КТ-аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ-аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника — рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки относительно оси z — направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5—2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография — МСКТ) была впервые представлена компанией Elscint Co. в 1992 году. Принципиальное отличие МСКТ от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая — объёмная геометрическая форма пучка.

В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ с двумя рядами детекторов, а в 1998 году — четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные МСКТ пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ четвёртого поколения. В 2004—2005 годах были представлены 32-, 64- и 128-срезовые МСКТ, в том числе — с двумя рентгеновскими трубками. В 2007 году Toshiba вывела на рынок 320-срезовые компьютерные томографы, в 2013 году — 512- и 640-срезовые. Они позволяют не только получать изображения, но и дают возможность практически в «реальном» времени наблюдать физиологические процессы, происходящие в головном мозге и в сердце[источник не указан 1093 дня].

Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т. д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями.

Преимущества МСКТ перед обычной спиральной КТ
  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов.
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1—1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСКТ:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.

Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСКТ выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений.

Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба. В этом случае пространственные разрешения в поперечной плоскости x—y и вдоль продольной оси z становятся одинаковыми.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза — до 0,45—0,5 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшению качества исполнения электронных компонентов и плат; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Используются генераторы большей мощности (до 100 кВт). Конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 млн единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ-установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшают фильтрацию спектра рентгеновского излучения и производят оптимизацию массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

В 2005 году компанией «Siemens Medical Solutions» представлен первый аппарат с двумя источниками рентгеновского излучения (Dual Source Computed Tomography). Теоретические предпосылки к его созданию были ещё в 1979 году, но технически его реализация в тот момент была невозможна.

По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов, находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть времени полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для её увеличения, так как при обороте трубки в 0,33 с её вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g.

Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.

Также такой аппарат имеет ещё одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси крови и йодосодержащего контрастного вещества при неизменности этого параметра у гидроксиапатита (основа кости) или металлов.

В остальном аппараты являются обычными МСКТ-аппаратами и обладают всеми их преимуществами.

Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определённым режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование.

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления — разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4—5 мл/сек сканирование начинается примерно через 20—30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40—60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография — одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объёме около 100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности:

  • перфузию головного мозга
  • перфузию печени

Показания к компьютерной томографии

Компьютерная томография широко используется в медицине для нескольких целей:

  1. Как скрининговый тест — при следующих состояниях:
    • Головная боль (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Травма головы, не сопровождающаяся потерей сознания (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Обморок
    • Исключение рака легких.
    В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.
  2. Для диагностики по экстренным показаниям — экстренная компьютерная томография
    • Экстренная КТ головного мозга — наиболее часто проводимая экстренная КТ, являющаяся методом выбора при следующих состояниях[3]:
      • Впервые развившийся судорожный синдром
      • Судорожный синдром с судорожным расстройством в анамнезе, в сочетании с хотя бы одним из перечисленного:
      • Травма головы, сопровождающаяся хотя бы одним из перечисленного:
      • Головная боль в сочетании с хотя бы одним из перечисленного:
        • острым, внезапным началом
        • очаговым неврологическим дефицитом
        • стойкими изменениями психического статуса
        • когнитивными нарушениями
        • предполагаемой или доказанной ВИЧ-инфекцией
        • возрастом старше 50 лет и изменением характера головной боли
      • Нарушение психического статуса в сочетании с хотя бы одним из перечисленного:
    • Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)
    • Подозрение на некоторые другие «острые» поражения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения) — по клиническим показаниям, при недостаточной информативности нерадиационных методов.
  3. Компьютерная томография для плановой диагностики
    • Большинство КТ-исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии делаются более простые исследования — рентген, УЗИ, анализы и т. д.
  4. Для контроля результатов лечения
  5. Для проведения лечебных и диагностических манипуляций, например пункции под контролем компьютерной томографии и др.
    • Преоперативные изображения, полученные с помощью компьютерной томографии, используются в гибридных операционных во время хирургических операций.

При назначении КТ-исследования, как при назначении любых рентгенологических исследований, необходимо учитывать следующие аспекты[4]:

  • приоритетное использование альтернативных (нерадиационных) методов;
  • проведение рентгенодиагностических исследований только по клиническим показаниям;
  • выбор наиболее щадящих методов рентгенологических исследований;
  • риск отказа от рентгенологического исследования должен заведомо превышать риск от облучения при его проведении.

Окончательное решение о целесообразности, объёме и виде исследования принимает врач-рентгенолог[5].

Некоторые абсолютные и относительные противопоказания

Без контраста:

  • Беременность
  • Масса тела слишком велика для прибора

С контрастом:

Также проведение компьютерной томографии увеличивает частоту возникновения повреждений в ДНК. При проведении компьютерной томографии доза излучения оказалась в 150 раз выше, чем при однократном рентгенологическом исследовании грудной клетки[6].

См. также

Примечания

Литература

  • Cormack A. M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 551—563
  • Hounsfield G. N. Computed Medical Imaging // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 568—586
  • Вайнберг Э. И., Клюев В. В., Курозаев В. П. Промышленная рентгеновская вычислительная томография // Приборы для неразрушающего контроля материалов и изделий: Справочник / под ред. В. В. Клюева. — 2-е изд. — M., 1986. — Т. 1.

wiki.sc

"Метод компьютерной томографии"

Новосибирская государственная медицинская академия

Методические рекомендации

для студентов

Новосибирск 2005

Компьютерная томография (КТ) представляет собой один из современных методов лучевой диагностики, в основе которого лежит использование рентгеновского излучения. Результатом КТ является цифровое (дигитальное) изображение поперечного сечения исследуемого объекта. С 70-х годов КТ стала рутинной методикой лучевого исследования головы, живота и таза. В последнее десятилетие КТ находит все большее применение в диагностике заболеваний органов дыхания.

Сущность метода заключается в поперечном сканировании объекта тонким рентгеновским пучком с последующей регистрацией ослабленного излучения специальными детекторами, преобразовании его в цифровую информацию и синтеза двухмерного полутонового изображения.

Рентгеновский компьютерный

томограф IV поколения, установленный в

Государственном Новосибирском Областном Клиническом Диагностическом Центре.

В современных КТ установках выделяют несколько узлов:

  1. генератор высокого напряжения;

  2. гентри (gantry – англ, станина), в котором расположены рентгеновская трубка и детекторы;

  3. стол-транспортер;

  4. электронно-вычислительная машина;

  5. консоль для управления процессом сканирования;

  6. средства для архивации изображения (оптические и лазерные диски и др.).

Типы кт установок

В системах первого и второго поколений, ротационно-трансляционных, рентгеновская трубка и несколько детекторов жестко укреплены на прямоугольной раме. В процессе исследования рама первоначально движется поперек тела пациента, поскольку ширина пучка рентгеновских лучей недостаточна для охвата всего поперечного сечения объекта исследования. По окончании линейного (трансляционного) движения трубки рама совершает поворот (ротацию) на 1 градус и цикл повторяется вновь. Всего производится 180 циклов трансляционно-ротационного движения. Такие аппараты могут применяться только для исследования неподвижных объектов, прежде всего головы, и в настоящее время практически не используются.

В системах третьего поколения сканирование объекта осуществляется широким веерообразным пучком рентгеновских лучей, который полностью перекрывает тело пациента. Количество детекторов увеличено до 250 — 1000. При выполнении компьютерной томограммы рентгеновская трубка и расположенные напротив нее детекторы вращаются вокруг пациента на 360 градусов. Цикл сканирования не превышает 5 — 8 секунд, а в современных аппаратах уменьшен до 0,75 — 3,0 секунд. Это позволяет уменьшить влияние пульсирующих сосудов и движущихся органов (сердца, диафрагмы, желудка, кишечника) на конечное изображение и проводить полноценные исследования всего тела.

В системах четвертого поколения детекторы жестко укреплены по всей окружности рамы сканирующего устройства, внутри которой вращается только рентгеновская трубка. В результате время сканирования уменьшается до 0,5 — 3,0 секунд. По основным параметрам системы третьего и четвертого поколения примерно равны между собой. Вместе с тем, неподвижность детекторов в установках четвертого поколения создает более благоприятные условия для сканирования, уменьшает количество артефактов, что и определяет преимущества этого типа аппаратов.

В системах пятого поколения функцию рентгеновской трубки выполняет компактный линейный ускоритель. В нем происходит ускорение электронов, формирование и пространственная ориентация электронного пучка. Анод и детекторы закреплены вдоль внутренней поверхности рамы, вокруг пациента. При торможении электронов у анода возникает рентгеновское излучение, которое фильтруется и коллимируется. Рентгеновский луч при этом приобретает типичную веерообразную форму. Скорость вращения пучка электронов и, следовательно, рентгеновского луча вокруг пациента составляет тысячные доли секунды. Это позволяет получать до 10 — 20 изображений в секунду и наблюдать КТ картину в реальном масштабе времени.

Технология сканирования определяется характером перемещения источника излучения и объекта исследования в процессе исследования. В настоящее время существуют две принципиально различных технологии: обычная (традиционная) и спиральная.

Традиционная КТ

Обычная технология сканирования, или традиционная КТ, предполагает обязательную остановку рентгеновской трубки после каждого цикла вращения. Это необходимо для того, чтобы установить ее в исходное положение перед следующим циклом сканирования. В этот момент стол с пациентом передвигается на необходимое расстояние, называемое шагом стола (table feed), для получения следующей томограммы. При исследовании груди и живота временной промежуток между циклами вращения рентгеновской трубки необходим также для того, чтобы пациент мог сделать вдох или выдох, а затем задержать дыхание на период сканирования. Процесс сканирования в этом случае является дискретным, фрагментарным и разделен на отдельные циклы, равные одному обороту рентгеновской трубки вокруг объекта. Такой тип исследования часто обозначается как последовательный (sequence mode) или прирастающий (incremental СТ). Величина шага стола колеблется в пределах 1 — 20 мм и выбирается оператором в зависимости от задач конкретного исследования. Расположение каждой томограммы вдоль продольной оси сканирования всегда точно соответствует положению источника излучения и направлению пучка рентгеновских лучей. Поэтому шаг стола может быть определен и как расстояние между томографическими срезами (interscan interval). В последовательной КТ понятия шаг стола и расстояние между томографическими срезами являются синонимами. Программы, которые предполагают остановку рентгеновской трубки перед каждым циклом вращения с одновременной реконструкцией изображения на экране монитора обычно обозначаются как «scan and view» — сканирование и изображение. Такая форма исследования существенно удлиняет диагностическую процедуру. Время между циклами сканирования оказывается значительно больше времени самого сканирования. В результате длительность исследования крупных анатомических областей, например груди или живота, составляет 15-25 мин. Это может иметь существенное негативное значение при исследовании детей, больных в тяжелом состоянии, в том числе с дыхательной или сердечной недостаточностью. Значительное ускорение процесса сканирования. В современных аппаратах для традиционной КТ созданы условия для выполнения одной или нескольких серий томограмм-кластеров (claster — англ. группа), обычно включающих от 3 до 6 срезов в каждой серии. При этом рентгеновская трубка по-прежнему останавливается перед каждым новым циклом, но реконструкция изображений на экране монитора происходит только после окончания всей серии. Время между циклами вращения трубки и, следовательно, общее время сканирования уменьшается. Такая программа обычно обозначается как ((scan and scan» и обычно используется при выполнении ангиографических процедур, исследовании детей и пациентов в тяжелом состоянии.

При исследовании тела (грудь и живот) традиционная технология КТ имеет еще один существенный недостаток. Необходимость задержки дыхания перед каждым циклом сканирования приводит к появлению несоответствия прилежащих томографических срезов, поскольку глубина вдоха или выдоха каждый раз различается. Это обстоятельство может привести к пропуску небольших патологических образований, например метастазов в легких или печени. Кроме того, двухмерные реформации в других плоскостях, отличных от аксиальной, и трехмерные преобразования томограмм оказываются неинформативными.

Спиральная КТ

Новая концепция сканирования, названная спиральной КТ, используется в клинической практике начиная с 1990 года. В англоязычной литературе используется несколько терминов для обозначения этой технологии — spiral СТ, helical СТ, volumetric СТ. Каждый из них подчеркивает наиболее существенные особенности этой технологии. Спиральное сканирование заключается в одновременном выполнении двух процедур: непрерывного вращения рентгеновской трубки (пучка электронов в установках пятого поколения) вокруг объекта и

непрерывного поступательного движения стола с пациентом. В этом случае траектория пучка рентгеновских лучей, спроецированная на тело пациента, приобретает форму спирали. Максимально возможная длина такой спирали вдоль продольной оси определяется мощностью рентгеновской трубки и теплоемкостью ее анода. Технология спиральной КТ реализуется на установках третьего, четвертого и пятого поколений. Основные преимущества спиральной

КТ заключаются в следующем:

1. Значительное ускорение процесса сканирования.

2. Принцип объемного сканирования, позволяющий получить непрерывный объем данных при исследовании выбранной анатомической области.

Сканирование одной анатомической области может быть проведено в течение 15-20 секунд. Это позволяет увеличить пропускную способность отделения, создать более комфортные условия для исследования новорожденных и детей, больных, находящихся в тяжелом состоянии, в том числе в раннем посттравматическом и послеоперационном периоде, при выраженной дыхательной или сердечной недостаточности. Однако наиболее важным следствием быстрого сканирования является возможность проведения эффективных ангиографических исследований. При быстром внутривенном введении водорастворимого контрастного вещества, обычно через локтевую вену, сканирование удается осуществить в момент прохождения его по крупным сосудам. В результате собственно КТ исследование дополняется полноценной ангиографией, но без сложных инвазивных вмешательств. В настоящее время КТ ангиография широко используется для оценки состояния крупных сосудов,

таких как аорты и ее ветви, легочные артерии, вены.

Возможность сканирования груди в течение одной задержки дыхания имеет и еще одну важную особенность. Получаемые изображения не зависят от неодинаковой глубины вдоха или выдоха. Этот недостаток, присущий традиционной технологии КТ, является причиной возможного пропуска патологии, например, небольших округлых образований или одиночных очагов в легких.

Вторым преимуществом спиральной КТ является принцип объемного или непрерывного сканирования выбранной анатомической области. Эта создает совершенно новые возможности для постпроцессорной обработки полученных данных, в частности для преобразования аксиальных томограмм в многоплоскостные реформации и трехмерные изображения. Результаты КТ исследования в этом случае становятся более наглядными, демонстративными, доступными не только для специалистов-рентгенологов, но и для лечащих врачей. Высокоинформативные многоплоскостные реформации, получаемые при спиральной КТ, устранили важнейший недостаток метода — ограничение диагностических изображений только аксиальной проекцией и максимально сблизили возможности КТ и МРТ.

Процесс сканирования при спиральной КТ описывается тремя взаимосвязанными параметрами: толщиной пучка рентгеновского излучения, скоростью вращения осуществляется непрерывно, не дискретно, термин «шаг стола» (table feed) заменен понятием «шаг или смещение стола за один оборот» (table feed per rotation). Количество оборотов, которое совершает источник излучения на заданном расстоянии, прямо пропорционально скорости вращения рентгеновской трубки и обратно пропорционально скорости смещения стола. Соотношение скорости смещения стола в процессе сканирования и скорости вращения рентгеновской трубки. определяет форму спирали. Однако конечный результат сканирования определяется не только формой спирали, ее «растяжением» вдоль продольной оси, но и толщиной пучка рентгеновского излучения. Поэтому более точной и полной характеристикой спирального сканирования является понятие «шаг спирали» или «наклон спирали» — pitch.

Шаг спирали представляет собой отношение смещения стола за один оборот рентгеновской трубки (table feed per rotation) к толщине пучка рентгеновского излучения (slice collimation).

pitch (р) = table feed реr rotation (тт) I slice collimation (mm) = d/s

Например, если толщина томографического слоя составляет 8 мм, а смещение стола за один оборот — 12 мм, то показатель шага спирали будет равен 1,5. В спиральной КТ шаг спирали может изменяться от 0,5 до 2. Чем больше величина шага спирали, тем быстрее осуществляется сканирование при равной толщине томографического слоя и протяженности зоны сканирования. Шаг спирали представляет собой безразмерную величину или индекс. Поскольку шаг спирали является производной от двух исходных показателей, его значение не указывается в программном обеспечении большинства аппаратов. Но конечный протокол сканирования может быть выражен двумя основными параметрами — толщина слоя (s) и шаг спирали (р).

Помимо последовательной и спиральной технологии в программном обеспечении современных аппаратов принято выделять динамическое сканирование и мультисканирование. Динамическая КТ предполагает выполнение томограмм на одном уровне через определенные, заранее заданные временные интервалы. Эта технология используется для оценки денситометрических показателей в процессе накопления контрастных веществ в тканях или сосудах, а также для проведения функциональных исследований легких, сердца и некоторых других органов. Мультисканирование заключается в получение томограмм на одном уровне при спиральной КТ, т.е. без временного интервала между ними. Эта технология позволяет получать изображения практически в реальном масштабе времени и обычно применяется для проведения инвазивных процедур под контролем КТ.

Проекционные данные

Совокупность исходных коэффициентов ослабления составляют так называемые сырые данные (raw data) или проекционные данные (projection data). Количество проекций обычно составляет 360. Это означает, что в течение одного цикла сканирования (одного оборота источника излучения вокруг объекта) детекторы воспринимают рентгеновское излучение 360 раз, при смещении источника на каждый последующий градус окружности. Чем больше количество проекций, тем выше разрешающая способность вдоль поперечной плоскости сканирования и больше время сканирования. Увеличение количества проекций до 720 используют при необходимости повышения разрешающей способности, например при высокоразрешающей КТ. Уменьшение количества проекций до 180...240 (половинный скан, неполный скан) применяют для максимального ускорения процесса сканирования, обычно при выполнении ангиографических исследований. В наиболее совершенных аппаратах третьего и четвертого поколения минимальное время сканирования составляет 0,5...0,75 сек. Однако, чем более совершенной является установка и ее программное обеспечение, тем больше количество используемых проекций за это минимальное время.

NB! Именно использование множества проекций при получении одного изображения принципиально отличает КТ от всех остальных рентгенологических, в том числе цифровых методик. На рентгеновском снимке изображение возникает в результате прохождения лучей в одном направлении (проекции). При этом происходит суммация, взаимное наложение составных частей исследуемого объекта. Этот эффект может быть уменьшен с помощью обычной томографии. Однако и в этом случае сказывается влияние анатомических структур, расположенных выше и ниже выделяемого томографического слоя. Изображение при КТ лишено суммационного эффекта. На его формирование не оказывают влияния число, форма, объем и взаимное расположение тканей, через которые проходят рентгеновские лучи. Это обстоятельство существенно увеличивает объем информации, содержащейся в каждой компьютерной томограмме по сравнению с обычной рентгенограммой или томограммой.

А

Рентгеновская компьютерная томограмма головного мозга (с контрастированием и патологическими изменениями вещества мозга), слой

на уровне передних рогов боковых желудочков.

нализ изображения

Анализ компьютерно-томографического изображения направлен на оценку состояния органов и тканей исследуемой области и выявления в них патологических изменений. Изучение компьютерных томограмм проводится с использованием различных электронных окон. Анализ изображения может быть структурным (анатомическим) и денситометрическим.

Шкала Хаунсфилда

Электронная матрица является основой для формирования изображения поперечного сечения объекта исследования. Такое изображение может быть представлено в двух видах: как полутоновая картина, состоящая из различных оттенков серого цвета, или как таблица распределения абсолютных значений коэффициентов ослабления.

В первом случае результат сканирования выводится на монитор, где каждому пикселю присваивается определенный оттенок серой шкалы в зависимости от величины коэффициента ослабления. Низким значениям соответствуют более темные участки, высоким — более светлые. Поэтому на компьютерных томограммах, как и на рентгенограммах, воздух изображается в виде участков темного (черного) цвета, мягкие ткани и кровеносные сосуды — серого, кости — светло серого или белого.

Вычисленные коэффициенты ослабления рентгеновского излучения выражаются в относительных величинах, так называемых единицах Хаунсфилда (Hounsfield units, HU). Единицы Хаунсфилда образуют шкалу, в которой за ноль принят коэффициент ослабления воды, а нижняя граница (-1000 HU) соответствует коэффициенту ослабления воздуха.

Верхняя граница шкалы вариабельна, так как она соответствует коэффициенту ослабления кортикального слоя кости. Этот показатель определяется разрешающей способностью аппарата и может достигать +1000...+40000 HU. Наибольшие значения коэффициентов ослабления регистрируются в пирамидах височной кости. Значения плотности для большинства паренхиматозных органов составляют +30...+70 HU, крови в сосудах и камерах сердца — в пределах +40...+45 НУ, жировых тканей — от -30 HU до -100 HU. Теоретически эти условные числа должны быть прямо пропорциональны коэффициентам ослабления. Однако точность измерений сильно страдает от неточностей и несоответствий, вызываемых разнообразными артефактами. Поэтому для диагностических целей единицы Хаунсфилда необходимо использовать с осторожностью.

NB! Возможность не только визуально изучать исследуемый объект, но и проводить прямой денситометрический анализ с измерением коэффициентов ослабления в единицах Хаунсфилда является существенным преимуществом КТ по сравнению с обычным рентгенологическим исследованием. При анализе рентгеновских снимков денситометрия также возможна, однако она является непрямой, опосредованной, и основана на сопоставлении степени почернения рентгеновской пленки интересующей области и выбранного эталона, например, алюминиевого клина. Помимо собственно полутонового изображения, числовые значения коэффициентов ослабления могут быть представлены в виде таблицы на экране монитора или на бумаге после их распечатки с помощью принтера. Изучение пространственного распределения абсолютных значений коэффициентов ослабления иногда применяется для уточнения обычных денситометрических показателей, в частности при выявлении обызвествлении в патологических образованиях.

Электронные окна

Изображение поперечного среза на экране монитора представляет собой распределение различных оттенков серой шкалы, соответствующих определенным значениям коэффициентов ослабления. Вычислительная машина КТ установки способна различить от 2 до 40 тыс. значений коэффициентов ослабления, однако воспроизвести все эти значения на экране монитора невозможно. Глаз человека обычно воспринимает до 16 — 20 градаций серого цвета. Поэтому на экране монитора вся гамма серого цвета объединена в 16 ступеней, каждая из которых включает до 130 и более оттенков. Соотношение числовых значений коэффициентов ослабления и оттенков серой шкалы регулируется с помощью электронных окон.

Окном (Window) называют определенную часть шкалы Хаунсфилда, которой соответствует перепад величины яркости экрана от белого до черного. Ширина окна (Window Width, WW) — это величина разности наибольшего и наименьшего коэффициента ослабления, отображаемых

данным перепадом яркости от белого до черного цвета. Уровень окна (Window Level, WL) — это величина коэффициента ослабления, соответствующая середине окна. Изменение уровня окна дозволяет перемещать его в сторону больших или меньших значений чисел Хаунсфилда.

Ширина и уровень окна выбираются оператором, исходя из условий наилучшего изучения определенной группы тканей. Так, коэффициенты ослабления большинства мягких тканей (кожных покровов, мышц, сухожилий), паренхиматозных органов, лимфатических узлов и кровеносных сосудов находятся в пределах +30...+70 HU. Жировая клетчатка имеет более низкую плотность (-30...-120 HU). При изучении на компьютерных томограммах этих структур, а также патологических образований в грудной полости, жидкости в плевральных полостях, безвоздушных участков легочной ткани, необходимо использовать относительно узкое окно (350...500 HU) при уровне окна +35...+45 HU. Такое окно условно обозначается как мягкотканое (window). Коэффициенты ослабления собственно легочной ткани составляют -850...-750 HU. Воздух в просветах крупных бронхов имеет существенно меньшую плотность (-1000 HU), в то время как кровь в сосудах легких — значительно большую (в среднем +40 HU). Для получения оптимального изображения легочной ткани с содержащимися в ней сосудами, бронхами, листками плевры и другими «мягкоткаными» структурами ширина окна должна быть увеличена до 800 — 2000 HU, а уровень окна смещен в сторону низких значений коэффициентов ослабления (-300...-800 HU). Такие параметры характерны для легочного и плеврального окон.

studfile.net

Компьютерная томография — Википедия

Компьютерный томограф

Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, — разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1].

В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии. В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии. Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратного представления в различных анатомических плоскостях (проекциях) однократно полученных «сырых» КТ-данных, а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

В нейрохирургии до внедрения компьютерной томографии применялись предложенные в 1918—1919 годах Уолтером Денди вентрикуло- и пневмоэнцефалография. Пневмоэнцефалография впервые позволила нейрохирургам проводить визуализацию внутричерепных новообразований с помощью рентгеновских лучей. Они проводились путём введения воздуха либо непосредственно в желудочковую систему мозга (вентрикулография) либо через поясничный прокол в субарахноидальное пространство (пневмоэнцефалография). Проведение вентрикулографии, предложенное Денди в 1918 году, имело свои ограничения, так как требовало наложения с диагностической целью фрезевого отверстия и вентрикулопункции. Пневмоэнцефалография, описанная в 1919 году, была менее инвазивным методом и широко использовалась для диагностики внутричерепных образований. Однако, как вентрикуло-, так и пневмоэнцефалография представляли из себя инвазивные методы диагностики, которые сопровождались появлением у больных интенсивных головных болей, рвоты, несли целый ряд рисков. Поэтому с внедрением компьютерной томографии они перестали применяться в клинической практике. Эти методы были заменены более безопасными КТ-вентрикулографией и КТ-цистернографией, применяемыми значительно реже, по строгим показаниям[2], наряду с широко используемой бесконтрастной компьютерной томографией головного мозга.

Шкала Хаунсфилда

Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей, англ. Hounsfield units»), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет от −1024 до +3071, то есть 4096 чисел ослабления. Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные — мягким тканям, костной ткани и более плотному веществу (металл). В практическом применении измеренные показатели ослабления могут несколько отличаться на разных аппаратах.

Следует отметить, что «рентгеновская плотность» — усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды).

Изменение окна изображения

Обычный компьютерный монитор способен отображать до 256 оттенков серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 оттенков. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно.

Средние денситометрические показатели

КТ-снимок грудной клетки в легочном и мягкотканном окнах (на изображениях указаны параметры центра и ширины окна)
Вещество HU
Воздух −1000
Жир −120
Вода 1
Мягкие ткани +40
Кости +400 и выше

Развитие современного компьютерного томографа

Современный компьютерный томограф фирмы Siemens Medical Solutions

Современный компьютерный томограф представляет собой сложный программно-технический комплекс. Механические узлы и детали выполнены с высочайшей точностью. Для регистрации прошедшего через среду рентгеновского излучения используются сверхчувствительные детекторы. Конструкция и материалы, применяемые при их изготовлении, постоянно совершенствуются. При изготовлении компьютерного томографа предъявляются самые жесткие требования к рентгеновским излучателям. Неотъемлемой частью аппарата является обширный пакет программного обеспечения, позволяющий проводить весь спектр компьютерно-томографических исследований (КТ-исследований) с оптимальными параметрами, проводить последующую обработку и анализ КТ-изображений. Как правило, стандартный пакет программного обеспечения может быть значительно расширен с помощью узкоспециализированных программ, учитывающих особенности сферы применения каждого конкретного аппарата.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений. Так, например, для получения томограммы размером 200×200 пикселей система включает 40 000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельных вычислениях.

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ-томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 году. КТ-аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Каждый слой обрабатывался около 4 минут.

Во 2-м поколении КТ-аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ-аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года, когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника — рентгеновской трубки, генерирующей излучение, вокруг тела пациента, и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки относительно оси z — направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5—2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография — МСКТ) была впервые представлена компанией Elscint Co. в 1992 году. Принципиальное отличие МСКТ от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая — объёмная геометрическая форма пучка.

В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ с двумя рядами детекторов, а в 1998 году — четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные МСКТ пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ четвёртого поколения. В 2004—2005 годах были представлены 32-, 64- и 128-срезовые МСКТ, в том числе — с двумя рентгеновскими трубками. В 2007 году Toshiba вывела на рынок 320-срезовые компьютерные томографы, в 2013 году — 512- и 640-срезовые. Они позволяют не только получать изображения, но и дают возможность практически в «реальном» времени наблюдать физиологические процессы, происходящие в головном мозге и в сердце[источник не указан 1099 дней].

Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т. д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями.

Преимущества МСКТ перед обычной спиральной КТ
  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов.
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1—1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСКТ:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.

Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСКТ выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений.

Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба. В этом случае пространственные разрешения в поперечной плоскости x—y и вдоль продольной оси z становятся одинаковыми.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза — до 0,45—0,5 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшению качества исполнения электронных компонентов и плат; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Используются генераторы большей мощности (до 100 кВт). Конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 млн единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ-установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшают фильтрацию спектра рентгеновского излучения и производят оптимизацию массива детекторов. Разработаны алгоритмы, позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа, размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

В 2005 году компанией «Siemens Medical Solutions» представлен первый аппарат с двумя источниками рентгеновского излучения (Dual Source Computed Tomography). Теоретические предпосылки к его созданию были ещё в 1979 году, но технически его реализация в тот момент была невозможна.

По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов, находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть времени полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для её увеличения, так как при обороте трубки в 0,33 с её вес возрастает в 28 раз (перегрузки 28 g). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g.

Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.

Также такой аппарат имеет ещё одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси крови и йодосодержащего контрастного вещества при неизменности этого параметра у гидроксиапатита (основа кости) или металлов.

В остальном аппараты являются обычными МСКТ-аппаратами и обладают всеми их преимуществами.

Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определённым режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование.

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления — разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4—5 мл/сек сканирование начинается примерно через 20—30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40—60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография — одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объёме около 100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности:

  • перфузию головного мозга
  • перфузию печени

Показания к компьютерной томографии

Компьютерная томография широко используется в медицине для нескольких целей:

  1. Как скрининговый тест — при следующих состояниях:
    • Головная боль (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Травма головы, не сопровождающаяся потерей сознания (за исключением сопутствующих факторов, требующих проведения экстренной КТ)
    • Обморок
    • Исключение рака легких.
    В случае использования компьютерной томографии для скрининга, исследование делается в плановом порядке.
  2. Для диагностики по экстренным показаниям — экстренная компьютерная томография
    • Экстренная КТ головного мозга — наиболее часто проводимая экстренная КТ, являющаяся методом выбора при следующих состояниях[3]:
      • Впервые развившийся судорожный синдром
      • Судорожный синдром с судорожным расстройством в анамнезе, в сочетании с хотя бы одним из перечисленного:
      • Травма головы, сопровождающаяся хотя бы одним из перечисленного:
      • Головная боль в сочетании с хотя бы одним из перечисленного:
        • острым, внезапным началом
        • очаговым неврологическим дефицитом
        • стойкими изменениями психического статуса
        • когнитивными нарушениями
        • предполагаемой или доказанной ВИЧ-инфекцией
        • возрастом старше 50 лет и изменением характера головной боли
      • Нарушение психического статуса в сочетании с хотя бы одним из перечисленного:
    • Подозрение на повреждение сосуда (например, расслаивающая аневризма аорты)
    • Подозрение на некоторые другие «острые» поражения полых и паренхиматозных органов (осложнения как основного заболевания, так и в результате проводимого лечения) — по клиническим показаниям, при недостаточной информативности нерадиационных методов.
  3. Компьютерная томография для плановой диагностики
    • Большинство КТ-исследований делается в плановом порядке, по направлению врача, для окончательного подтверждения диагноза. Как правило, перед проведением компьютерной томографии делаются более простые исследования — рентген, УЗИ, анализы и т. д.
  4. Для контроля результатов лечения
  5. Для проведения лечебных и диагностических манипуляций, например пункции под контролем компьютерной томографии и др.
    • Преоперативные изображения, полученные с помощью компьютерной томографии, используются в гибридных операционных во время хирургических операций.

При назначении КТ-исследования, как при назначении любых рентгенологических исследований, необходимо учитывать следующие аспекты[4]:

  • приоритетное использование альтернативных (нерадиационных) методов;
  • проведение рентгенодиагностических исследований только по клиническим показаниям;
  • выбор наиболее щадящих методов рентгенологических исследований;
  • риск отказа от рентгенологического исследования должен заведомо превышать риск от облучения при его проведении.

Окончательное решение о целесообразности, объёме и виде исследования принимает врач-рентгенолог[5].

Некоторые абсолютные и относительные противопоказания

Без контраста:

  • Беременность
  • Масса тела слишком велика для прибора

С контрастом:

Также проведение компьютерной томографии увеличивает частоту возникновения повреждений в ДНК. При проведении компьютерной томографии доза излучения оказалась в 150 раз выше, чем при однократном рентгенологическом исследовании грудной клетки[6].

См. также

Примечания

Литература

  • Cormack A. M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 551—563
  • Hounsfield G. N. Computed Medical Imaging // Nobel Lectures in Physiology or Medicine 1971—1980. — World Scientific Publishing Co., 1992. — P. 568—586
  • Вайнберг Э. И., Клюев В. В., Курозаев В. П. Промышленная рентгеновская вычислительная томография // Приборы для неразрушающего контроля материалов и изделий: Справочник / под ред. В. В. Клюева. — 2-е изд. — M., 1986. — Т. 1.

wikipedia.green

Виды томографии, виды исследований компьютерной томографии

В современной медицине существует масса видов исследований, к которым относятся и виды томографии, такие как  УЗИ, рентген, КТ, МРТ, биопсия и многое другое. Каждое из них служит для своей цели, но все они предназначены для диагностики различных заболеваний.
Сегодня мы поговорим о компьютерной и магнитно-резонансной томографии.
Эти два различных методов исследований идут рука об руку. Дело в том, что одно дополняет другое.

Компьютерная томография работает на основе рентгеновского излучения и больше подходит для изучения твердых тканей организма. Принцип работы магнитно-резонансной томографии основывается на взаимодействии с атомами водорода, которые в огромном количестве содержатся в мягких тканях. Таким образом, эти два метода исследований позволяют диагностировать любое заболевание и провести обследование всего организма полностью. По этой причине их проведение назначают вместе.

Компьютерная томография

Это один из самых информативных методов исследований, который позволяет выявить любую хирургическую или терапевтическую патологию, спрогнозировать ее развитие и назначить адекватное лечение. Как уж было сказано выше, КТ назначается для исследования патологий твердых тканей организма.

Один из видов КТ -спиральная, где пучок рентгеновских лучей вращается по спирали. Прибор делает до нескольких снимков за один оборот

Виды КТ

Сканирование проводится при помощи гамма-излучения. Составляется точная модель исследуемой области, на которой видны все патологии. Снимки распечатываются на принтере и поступают на расшифровку, после чего лечащий врач ставит диагноз и назначает лечение. А сегодняшний день существует несколько видов компьютерной томографии.

  1. Спиральная. В этом случае пучок рентгеновских лучей вращается по спирали. Прибор делает до нескольких снимков за один оборот. Все зависит от заданной рентгенологом скорости вращения.
  2. Мультиспиральная. Это более совершенный вид томографии, который позволяет ускорить процесс обследования. Эта технология позволяет делать до 300 снимков за один оборот, что существенно повышает эффективность исследования. При помощи мультиспиральной компьютерной томографии врачи могут зафиксировать процессы, которые идут в организме всего за одну секунду. Этот вид КТ назначают только по экстренным показаниям.
  3. Компьютерная томография с применением контрастирования. В качестве контрастирующего вещества применяется йод. Он позволяет при помощи КТ выявить онкологические заболевания.

Для некоторых видов МРТ контрастирование необходимо, к примеру, для исследования онкологических патологий, заболеваний сосудов


Несмотря на то, что во время проведения компьютерной томографии используется рентгеновское излучение, процедура считается абсолютно безвредной для организма. Дело в том, что используется меньше негативной энергии, чем даже при рентгенографии. Это по-настоящему современный метод диагностики, с помощью которого уже было предотвращено огромное количество летальных исходов.

Магнитно-резонансная томография

Этот метод исследования организма считается немногим более совершенным, чем компьютерная. Он сочетает в себе абсолютную безболезненность, безвредность и высшую степень информативности, чем заслужил большую популярность в современной медицине. МРТ классифицируется по двум основаниям.

С контрастированием и без

Контрастное вещество для магнитно-резонансной томографии представляет собой редкоземельный металл – Гадолиний, который нужен для значительного повышения чувствительности томографа. Для некоторых видов МРТ контрастирование необходимо, к примеру, для исследования онкологических патологий, заболеваний сосудов и так далее.

По исследуемой области

  1. МРТ головного мозга. Такое исследование используется в нейрохирургии. Используется специальная программа для получения снимков с высоким разрешением для исследования различных областей головного мозга. Помогает получить исчерпывающую информацию о масштабах патологии и ее локализации.
  2. МРТ использую при исследовании головного мозга в нейрохирургии, помогает получить исчерпывающую информацию о масштабах патологии и ее локализации

  3. МРТ позвоночника. Может проводиться как для каждого отдела (шейного, грудного, поясничного и пояснично-крестцового), так и для всего позвоночника в общем. При помощи этого метода исследований можно определить огромное количество патологий в области позвоночника или с локализацией в спинном мозге.
  4. МРТ органов брюшной полости. В ходе этой процедуры обследованию подвергается целый спектр различных органов. Снимки МРТ позволяют диагностировать большое количество заболеваний на ранней стадии развития, что приближает человечество к успешному лечению рака.
  5. МРТ суставов. Это исследование используется в травматологии, хирургии и ортопедии. При помощи этой процедуры можно отследить все изменения в составных частях суставов.
  6. МРТ всего организма. Это самое обширное исследование, которое включает в себя поиск опухолевых заболеваний и оценку состояния организма в целом.

Магнитно-резонансная томография является отличным методом диагностики, который отвечает требования современной медицины. Его рекомендуют проводить всем без исключения для поиска возможных патологий и выявления их на ранней стадии развития.

mrt-diagnostics.ru

2.1.4. Компьютерная томография

Компьютерная томография (КТ) – новейший метод, дающий точные и детальные изображения малейших изменений плотности мозгового вещества. КТ соединила в себе последние достижения рентгеновской и вычислительной техники, отличаясь принципиальной новизной технических решений и математического обеспечения.

Главное отличие КТ от рентгенографии состоит в том, что рентген дает только один вид части тела. При помощи компьютерной томографии можно получить множество изображений одного и того же органа и таким образом построить внутренний поперечный срез, или «ломтик» этой части тела. Томографическое изображение – это результат точных измерений и вычислений показателей ослабления рентгеновского излучения, относящихся только к конкретному органу.

Таким образом, метод позволяет различать ткани, незначительно отличающиеся между собой по поглощающей способности. Измеренные излучение и степень его ослабления получают цифровое выражение. По совокупности измерений каждого слоя проводится компьютерный синтез томограммы. Завершающий этап – построение изображения исследуемого слоя на экране дисплея. Для проведения томографических исследований мозга используется прибор – нейротомограф.

Помимо решения клинических задач (например, определения местоположения опухоли) с помощью КТ можно получить представления о распределении регионального мозгового кровотока. Благодаря этому КТ может быть использована для изучения обмена веществ и кровоснабжения мозга.

В ходе жизнедеятельности нейроны потребляют различные химические вещества, которые можно пометить радиоактивными изотопами (например, глюкозу). При активизации нервных клеток кровоснабжение соответствующего участка мозга возрастает, в результате в нем скапливаются меченые вещества, и возрастает радиоактивность. Измеряя уровень радиоактивности различных участков мозга, можно сделать выводы об изменениях активности мозга при разных видах психической деятельности. Последние исследования показали, что определение максимально активизированных участков мозга может осуществляться с точностью до 1 мм.

Ядерно-магнитно-резонансная томография мозга. Компьютерная томография стала родоночальницей ряда других еще более совершенных методов исследования: томографии с использованием эффекта ядерного магнитного резонанса (ЯМР-томография), позитронной эмиссионной томографии (ПЭТ), функционального магнитного резонанса (ФМР). Эти методы относятся к наиболее перспективным способам неинвазивного совмещенного изучения структуры, метаболизма и кровотока мозга.

При ЯМР-томографии получение изображения основано на определении в мозговом веществе распределения плотности ядер водорода (протонов) и на регистрации некоторых их характеристик при помощи мощных электромагнитов, расположенных вокруг тела человека. Полученные посредством ЯМР-томографии изображения дают информацию об изучаемых структурах головного мозга не только анатомического, но и физико-химического характера. Помимо этого преимущество ядерно-магнитного резонанса заключается в отсутствии ионизирующего излучения; в возможности многоплоскостного исследования, осуществляемого исключительно электронными средствами; в большей разрешающей способности. Другими словами, с помощью этого метода можно получить четкие изображения «срезов» мозга в различных плоскостях.

ПЭТ – сканеры (Позитронно-эмиссионная трансаксиальная томография) сочетает возможности КТ и радиоизотопной диагностики. В ней используются ультракороткоживущие позитрониз-лучающие изотопы («красители»), входящие в состав естественных метаболитов мозга, которые вводятся в организм человека через дыхательные пути или внутривенно. Активным участкам мозга нужен больший приток крови, поэтому в рабочих зонах мозга скапливается больше радиоактивного «красителя». Излучения этого «красителя» преобразуют в изображения на дисплее.

С помощью ПЭТ измеряют региональный мозговой кровоток и метаболизм глюкозы или кислорода в отдельных участках головного мозга. ПЭТ позволяет осуществлять прижизненное картирование на «срезах» мозга регионального обмена веществ и кровотока.

В настоящее время разрабатываются новые технологии для изучения и измерения происходящих в мозге процессов, основанные, в частности, на сочетании метода ЯМР с измерением мозгового метаболизма при помощи позитронной эмиссии. Эти технологии получили название метода функционального магнитного резонанса (ФМР).

studfile.net

что это такое, история КТ, правила проведения, показания и противопоказания, результаты

КТ основывается на действии рентгеновских лучей. Диагностика сопровождается лучевой нагрузкой на организм. По окончании обследования доктор получает детализированный снимок. Метод преимущественен высокой информативностью. Наиболее результативно обследование при диагностике атеросклеротических поражений сосудов. Диагностика часто рекомендуется для уточнения сомнительного диагноза. КТ имеет ряд противопоказаний, с которыми требуется ознакомиться предварительно.

Аппарат КТ используется для диагностики самых разных патологий

В этой статье вы узнаете:

Что такое КТ

КТ расшифровывается как компьютерная томография. Такая процедура характеризуется послойным исследованием тканей и внутренних органов. Годом создания диагностического способа принято считать 1972 г.

Ежегодно аппараты для проведения КТ становятся более модернизированными, что делает процедуру максимально точной и безопасной. Это основной томографический метод. Диагностика сопровождается рентгеновским излучением.

Современные аппараты отображают до 255 оттенков серого цвета. Некоторые томографические устройства демонстрируют до 1100 оттенков. Именно по этой причине обследование высоко информативно и дает возможность обнаружить патологические процессы даже на начальных стадиях формирования.

КТ помогает выявить опухоли на самых ранних этапах

История метода

Создана томография в 1972 году. Первые медицинские алгоритмы для обследования были разработаны в первой половине прошлого века. Сначала аппарат мог сканировать только голову.

Уже в 1979 году авторы компьютерной томографии были удостоены Нобелевской премии. Первый аппарат для КТ был установлен в 1971 году.

В 2008 году были разработаны устройства, которые способны сформировать детализированный снимок менее чем за секунду. Сегодня КТ – один из ведущих методов томографического обследования. Используется только при наличии показаний к диагностике.

В СССР то

infouzi.ru


Смотрите также

© Copyright Tomo-tomo.ru
Карта сайта, XML.

Приём ведут профессора, доценты и ассистенты

кафедры лучевой диагностики и новых медицинских технологий

Института повышения квалификации ФМБА России