Расположение

Москва, ул.Гамалеи, д.15

м. Щукинская, авт/марш. №100 и №681
до ост. "Клиническая больница №86"

Пристройка к поликлинике 1 этаж
Отделение лучевой диагностики

Эл. почта:
[email protected]

 
  • Под контролем
    Под контролем

    Федерального
    медико-биологического
    агентства
  • Профессиональные снимки
    Профессиональные снимки

    на современном томографе
  • Удобное расположение
    Удобное расположение

    рядом с метро Щукинская
  • МРТ коленного сустава 4000 руб
    МРТ коленного сустава 4500 руб.
  • Предварительная запись
    Предварительная запись,
    что исключает ожидание в очереди
  • Возможность получения заключения на CD
    Возможность получения
    результатов на CD

Записаться
на приём

+7 (495) 942-38-23 (МРТ коленного сустава, денситометрия)

+7 (903) 545-45-60 (МРТ остальных зон)

+7 (903) 545-45-65 (КТ)

С 9.00 до 15.00

По рабочим дням

 


 

Кровь на мрт


Петербургская школа магнитно-резонансной томографии

» Лучевая диагностика » ЛУЧЕВАЯ ДИАГНОСТИКА БОЛЕЗНЕЙ » Отображение крови на МР изображении

 

Таблица и описание динамики крови при МРТ головного мозга. Различные типы внутримозговых кровоизлияний и их МРТ диагностика.

 

стадия

сроки

субстрат

магнитные

свойства

Т1

Т2

сверхострая

до 24 ч

оксигемоглобин

неразрушенных

эритроцитов

диамагнетик

изо- м.б. чуть гипер-  за счёт белков

изо-

острая

1-3 дн

дезоксигемоглобин      

парамагнетик

гипо-

гипо-      гипер-      сыворотка

Подострая

раняя

3-7 дн

Метгемоглобин

внутриклеточный

парамагнетик

гипер-

гипо-

Подострая

поздняя

7-14 дн

Метгемоглобин

внеклеточный

парамагнетик

гипер-

гипер-

Хроническая

кольцо

14+

Внутриклеточный

гемосидерин

парамагнетик

изо-

гипо-

центр

14+

Внеклеточные

гемихромы

диамагнетик

изо-

изо-

 

Уже на вторые - третьи сутки кровь становится гипоинтенсивной на Т2-зависимых МРТ головного мозга за счет превращения оксигемоглобина в дезоксигемоглобин (табл). Эритроциты остаются неразрушенными. Дезоксигемоглобин на Т1-зависимых МРТ изоинтенсивен белому веществу. Процесс изменения гемоглобина идет снаружи внутрь, поэтому внутримозговое кровоизлияние имеет кольцевую структуру. На Т2-зависимых МРТ снаружи идет широкая зона гиперинтенсивного отека, в центре - резко гипоинтенсивное кольцо внутриэритроцитарного дезоксигемоглобина. Уже на 5-6 сутки дезоксигемоглобин превращается в метгемоглобин, который гиперинтенсивен на томограммах обоих типов зависимости. Проверить наличие  “свежего” (в подострой стадии) кровоизлияния обязательно надо на Т1-взвешенных МРТ, так как гипоинтенсивное дезоксигемоглобиновое ядро на Т2-зависимых МРТ может быть связано и с другими причинами. Яркий сигнал на фоне гипоинтенсивного отека убедительно подтверждает кровоизлияние. Между первой и второй неделями происходит разрушение эритроцитов и выход метгемоглобина в межклеточное пространство. Свободный метгемоглобин гиперинтенсивен как на Т1-, так и на Т2-зависимых МРТ. Постепенно вокруг очага свободного метгемоглобина собираются макрофаги, которые поглощают его и превращают в гемосидерин. Последний, за счет парамагнитного эффекта железа,  всегда темный на МРТ Т2-зависимого типа.  Поэтому  переход к “хроническому” кровоизлиянию  на Т2-зависимых МРТ выглядит как светлый центр (внеклеточный метгемоглобин) и темная периферия (гемосидерин). На Т1-зависимых МРТ в этом периоде отчетливо видно яркое периферическое кольцо. Кольца не бывает только в том случае, если гематома дренируется в ликворное пространство. Постепенно метгемоглобин в центре превращается в гемихромы, которые не имеют парамагнитных свойств. Примерно к концу месяца кровоизлияние уже целиком состоит из гемосидерина. Депо гемосидерина медленно рассасывается. Даже через несколько лет в участке бывшего кровоизлияния можно обнаружить гипоинтенсивный участок, представляющий собой скопление молекул железа. Следует заметить, что динамика кровоизлияния при МРТ головного мозга сильно зависит от его массивности и силы поля магнита. При обширных кровоизлияниях процесс перехода метгемоглобина в другое состояние немного сдвинуто по  времени. В сильных полях парамагнитный эффект железа сильнее выражен, чем в низких. Градиентные последовательности более чувствительны к парамагнитному эффекту, чем радиочастотные. 

Об МРТ кровоизлияний в мозг можно читать также здесь.

 

Внутричерепные кровоизлияния

 

По локализации выделяют следующие типы внутричерепных кровоизлияний:

 

  • субарахноидальное
  • субдуральное
  • эпидуральное
  • интрапаренхимальное
  • внутрижелудочковое
  • внутриопухолевое

 

Могут быть следующие причины внутричерепных кровоизлияний:

 

  • гипертония
  • разрыв аневризмы или кровотечение из сосудистой мальформации
  • низкодифференцированные опухоли или метастазы
  • травма
  • энцефалит
  • тромбоз вен и (или) дурального синуса

 

Субарахноидальное кровоизлияние (САК) располагается между паутинной и мягкой мозговыми оболочками. Частота составляет  в России около 6 случаев на 100 тыс. САК происходят обычно в среднем возрасте . Причиной САК является разрыв аневризмы (около 80% САК нетравматической этиологии), черепно-мозговая травма , редко – сосудистые мальформации, менингит, опухоли, тромбоз вен или венозного синуса. В 10-20% случаев источник САК не выявляется при лучевой диагностике.  Такие кровоизлияния, скорее всего, связаны с разрывом мелкой аневризмы или поверхностной артерии. Неврологическая симптоматика при САК типичная: неожиданный приступ тяжёлой головной боли, особенно при  ярком свете, тошнота и рвота. Менингеальные знаки служат характерным симптомом САК.  Из-за неспецифичности проявлений САК ошибочный диагноз ставится в 25-35% случаев. Окраска ликвора кровью  появляется только через 12 часов после приступа САК, поэтому лучевая диагностика имеет  принципиальное значение в постановке диагноза. САК отличается высокой смертностью, ещё до госпитализации погибает 10-30% пациентов, в больнице выживает не более 30%.

 

Субарахноидальное кровоизлияние. Схема.

 

Субарахноидальное кровоизлияние, ранняя подострая стадия. Корональная Т1-взвешенная МРТ головного мозга.

 

Стандартный подход к диагностике САК состоит в выполнении КТ, чувствительность которой в первые 3 суток составляет 93-100%. В подострой стадии плотность гематомы снижается и через 5 дней чувствительность метода уже 85%, а через неделю падает до 50%. Чувствительность МРТ, напротив, постепенно нарастает. Визуализация гематом  на МРТ головного мозга и КТ принципиально различны. На КТ отображение крови зависит от гематокрита и содержания белков. На МРТ отображение крови зависит от состояния молекулы гема.

В первые сутки МРТ диагностика субарахноидальных кровоизлияний наиболее затруднительна, так как сигнал крови такой же как и  окружающего белого вещества как на Т1, так и на Т2-взвешенных томограммах (табл.). Это связано с тем, что оксигемоглобин не имеет парных электронов и потому не является парамагнитным. Изредка отмечается повышенный сигнал на Т2-зависимых томограммах, что объясняется локальным увеличением жидкости в межклеточных пространствах.  Двояковыпуклая форма отличительная черта САК при МРТ или КТ.

Локализация САК отражает расположение аневризмы: в передней межполушарной щели и лобной доле – ПСоА, Сильвиева щель – СМА, задняя черепная ямка – задний сегмент Виллизиева круга. Часто кровь разливается шире локальной зоны.

Прогноз при САК зависит от его массивности, повторных кровоизлияний, развития вазоспазма и гидроцефалии. Вероятность повторных САК составляет примерно 4% в первый день после первого эпизода, а затем снижается. Тем не менее, в первые 2 недели повторные САК отмечаются у 15-20% пациентов, и у 50% в течение 6 месяцев от первого эпизода САК. Спазм магистральных сосудов отмечается у 70-90% пациентов с САК, причём у половины из них развивается ОНМК по ишемическому типу. У значительного числа пациентов также появляется гидроцефалия , типично, в первые 3 дня, и в последующем остаётся у многих из них. 

Субдуральная кровоизлияние локализуется между твёрдой и паутинной оболочками мозга. Субдуральная гематома (СГ) обычно возникает вследствие разрыва вен. Причиной может быть травма, антикоагулянтная терапия и отрыв вен во время операции декомпрессии при гидроцефалии. Очень редко встречаются СГ при разрыве аневризм и кровотечениях из АВМ. Частота СГ составляет примерно 1 на 100 тыс., то есть примерно в 3-5 раз реже САК. Неврологическая симптоматика связана с масс-эффектом. При МРТ головного мозга видно, что располагается субдуральная гематома по конвекситальной поверхности, реже вдоль межполушарной щели, намёта мозжечка и в задней черепной ямке. Может быть сочетание СГ с кровоизлиянием в соседние участки мозга, что делает прогноз неблагоприятным. Отображение гематомы при КТ и МРТ зависит от её давности. Характерна форма гематомы в виде серпа, реже плосковыпуклая или неправильная. СГ обычно распространяется на поверхность всего полушария или значительную его часть.

 

Субдуральное кровоизлияние. Схема.

 

Субдуральная гематома. Острая стадия. Т1-взвешенная корональная МРТ головного мозга.

 

Эпидуральная гематома расположена между костями черепа и твёрдой мозговой оболочкой. Она имеет травматическое происхождение. Форма и распространение эпидуральной гематомы зависит от анатомических взаимоотношений костей черепа и твердой мозговой оболочки, места её локализации и объема излившейся крови. Форма её двояковыпуклая, реже плосковыпуклая. Она прилегает к своду черепа и имеет ограниченный характер в пределах 1-2 долей.

 

Эпидуральное кровоизлияние. Схема.

 

Интрапаренхимальные кровоизлияния чаще всего являются следствием гипертонии. Такие интрапаренхимальные кровоизлияния ещё называют геморрагическим инсультом. При повышении артериального давления происходит разрыв изменённых сосудов (гиалиноз, микроаневризмы). Частота интрапаренхимальных кровоизлияний составляет примерно 9 на 100 тыс. населения. У нас вы можете сделать МРТ любой сложности. По отношению к ОНМК геморрагический инсульт составляет 10-20%. Возраст пациентов обычно старше 45 лет. Типичные места расположения гематом этой этиологии - скорлупа, внутренняя капсула, реже ствол. Если гематома расположена вне указанной зоны, надо искать иную её причину - аневризму или мальформацию.

МРТ головного мозга. Интрапаренхимальное кровоизлияние в раннюю подострую стадию. Аксиальная Т2-взвешенная томограмма. Увеличение зоны интереса.

МРТ головного мозга. Интрапаренхимальное кровоизлияние в хронической (1 месяц) стадии. Аксиальная Т2-взвешенная томограмма и корональная Т1-взвешенная томограмма. Увеличение зоны интереса.

При МРТ в СПб перед нами стоит задача определения сроков кровоизлияния, его типа, массивности и воможного источника.

МРТ головного мозга адреса и це

В частном центре ЦМРТ профессор Холин А.В. лично диагностирует на МРТ аппарате  1,5 Тл  по субботам, воскресеньям, понедельникам, средам. Можно сделать МРТ головы дешево и по акциям. 

Спрашивайте МРТ цены у администратора.

 

Огромные МРТ учебные ресурсы на наших сайтах mrtspb.info и www.mri-kholin.ru по всем проблемам МРТ и ультразвуковой диагностики

www.mrtspb.info

МРТ диагностика кровоизлияний в мозг | МРТ головного мозга

 

МРТ головного мозга. Т1-взвешенная аксиальная МРТ. Субдуральная гематома. Цветовая обработка изображения.

 

Все кровоизлияния в мозг могут быть разделены на следующие типы:

 

  • интрапаренхимальное
  • субарахноидальное
  • субдуральное
  • эпидуральное
  • внутрижелудочковое
  • внутриопухолевое

 

Интрапаренхимальные кровоизлияния являются следствием гипертонии и проявляются в виде кровоизлияний в вещество мозга (геморрагический инсульт) и гипертензивных синдромах. Геморрагический инсульт возникает вследствие разрыва изменённых (гиалиноз, микроаневризмы) сосудов при повышении артериального давления. Частота геморрагического инсульта составляет около 9 случаев на 100 тысяч населения. Это 10-18% от всех смертей. По отношению к всем острым нарушениям мозгового кровообращения (ОНМК) на геморрагический инсульт приходится 10-20%. Кроме того, еще наблюдаются вторичные диапидезные кровоизлияния при ишемическом типе ОНМК. Также кровоизлияния типичны для венозных инфарктов. Возраст пациентов обычно старше 45 лет. Локализация геморрагического инсульта может быть почти любой, но чаще это базальные ядра, таламус, мозжечок.

Диагностика состоит в выполнении КТ и МРТ головного мозга. Отображение крови на МРТ зависит от сроков.

 

МРТ головного мозга. Аксиальная Т2-взвешенная МРТ. Кровоизлияние в мозжечок.

 

МРТ головного мозга. Т1-взвешенная корональная МРТ. Смешанный ишемический инсульт. Ранняя подострая стадия.

 

Субарахноидальное кровоизлияние (САК) – это кровоизлияние между арахноидальной и мягкой мозговыми оболочками. Эпидемиология САК отличается в разных странах, в  России около 6 на 100 тысяч населения. Самой частой причиной САК является травма, затем разрыв мешотчатой аневризмы (85% от нетравматических спонтанных кровоизлияний). На оставшиеся 15% нетравматических кровоизлияний приходятся доброкачественное перимезэнцефальное кровоизлияние неясной этиологии и разрыв вен. Смертность от САК очень высокая, и зависит от массивности и расположения кровоизлияния.

Клинические проявления состоят из:

  • Неожиданно приступ тяжёлой головной боли
  • Фотофобия, тошнота, рвота

При неврологическом осмотре выявляются менингеальные знаки – часто единственный признак САК. Ксантохромия СМЖ появляется через 12 и более часов после САК и может быть только методом позднего его подтверждения. Предлагаются разные подходы к лучевой диагностике САК. В первые сутки предпочтительна МРТ, так как кровь уже может быть видна на Т2-МРТ градиентного типа или FLAIR. В более поздние сроки, до 3-5 дня предпочтительнее КТ. Затем опять МРТ, которая чувствительнее КТ в подострую и хроническую фазы кровоизлияния.
Количество крови оценивается по шкале Фишера. Она делит кровоизлияние на 4 группы:

  1. Не визуализируется кровь
  2. Диффузное САК с толщиной до 1 мм, без сгустков
  3. Сгустки крови и (или) толщина САК больше 1 мм
  4. Внутримозговое или внутрижелудочковое кровоизлияние в сочетании с САК

 

МРТ головного мозга. Аксиальная МРТ типа FLAIR. Аневризма и САК, внутрижелудочковое кровоизлияние.

 

Субарахноидальное кровоизлияние опасно вазоспазмом, который наблюдается на 5-7 сутки. Сам спазм хорошо определяется при дуплексном сканировании. При МРТ головного мозга можно выявить ранние признаки ишемического инсульта.

 

МРТ головного мозга. Диффузионно-взвешенная МРТ последовательность. ОНМК в острой стадии вследствие вазоспазма.

 

Субдуральная гематома обычно возникает вследствие разрыва вен. Причины субдуральной гематомы – травма, антикоагулянтная терапия, резкая декомпрессия при шунтировании желудочков по поводу гидроцефалии. Очень редко встречаются субдуральные гематомы при разрыве аневризм и АВМ. Клинические проявления связаны смасс-эффектом. Частота субдуральных гематом составляет около 1 случая на 10 тысяч населения. Располагаются субдуральные гематомы по конвекситальной поверхности, изредка, вдоль межполушарной щели и намёта, в области задней черепной ямки. Может быть сочетание субдуральной гематомы с кровоизлиянием в соседние участки мозга. прогноз в этих случаях неблагоприятный. Отображение гематомы на КТ и МРТ зависит  от их давности. Субдуральные гематомы имеют форму серпа.

 

МРТ головного мозга. Аксиальная Т2-взвешенная МРТ. Подострая субдуральная гематома.

 

Эпидуральная гематома (экстрадуральная гематома) имеет травматическое происхождение. Это скопление крови внутренний костной пластинкой и твердой мозговой оболочкой. Обычно гематома расположена под областью перелома костей черепа. Причиной кровоизлияния является разрыв оболоченной артерии. Встречаются эпидуральные гематомы вдвое реже субдуральных. По форме гематома двояковыпуклая. Чаще всего диагностируется в неотложных условиях методом КТ. МРТ обычно применяется при спинальных эпидуральных гематомах.

 

КТ. Эпидуральная гематома.

 

Внутрижелудочковые кровоизлияния бывают первичные и вторичные. Первичные кровоизлияния наблюдаются при внутрижелудочковых опухолях, некоторых аневризмах (задней нижней мозжечковой со скоплением крови в 4 желудочке) и субэпендимальных кавернозных ангиомах. Вторичные кровоизлияния возникают как следствие прорыва крови в желудочки при интрапаренхимальных кровоизлияниях и САК.

 

МРТ головного мозга. Аксиальная Т2-взвешенная МРТ типа FLAIR. Внутрижелудочковое кровоизлияние.

 

Внутриопухолевые кровоизлияния встречаются редко. обычно они не обширные, как, например, при апоплексиях аденом гипофиза. Апоплексия – это острое нарушение кровоснабжения гипофиза с некрозом или кровоизлиянием. Частота около 10% случаев макроаденом. Клинически апоплексия появляется головными болями, рвотой и зрительными нарушениями. Изредка обширные кровоизлияния наблюдаются в метастазах.

 

МРТ головного мозга. Корональная Т1-взвешенная МРТ. Апоплексия макроаденомы гипофиза с кровоизлиянием.

 

Внутримозговое кровоизлияние любого типа относится к экстренным состояниям и МРТ в СПб выполняется, как правило в приемном покое больницы, либо делают срочно КТ. В подострую стадию возможности МРТ СПб позволяют выполнять исследование стационарных условиях и в хронической на открытом МРТ.

www.mri-kholin.ru

Субарахноидальное кровоизлияние — 24Radiology.ru

Лечение и прогноз

Лечение проводится в специализированном сосудистом центре в зависимости от причины САК

  • Никардипин (в РФ не зарегистрирован) при среднем артериальном давлении > 130 мм рт. ст.
  • Нимодипин используется для предотвращения спазма сосудов
  • Окклюзия аневризмы, являющейся первопричиной

Артериальную гипертензию следует лечить, только если среднее артериальное давление > 130 мм рт. ст.; необходимо поддерживать эуволемию и применять никардипин (в РФ не зарегистрирован) внутривенно с титрованием дозы, как при внутримозговом кровоизлиянии ( Внутримозговое кровоизлияние). Больному назначается строгий постельный режим. Беспокойство и головную боль лечат симптоматически. Назначают слабительные для предотвращения запоров, вызывающих болезненный стул. Противопоказано применение антикоагулянтов и антиагрегантов.

При появлении клинических признаков острой гидроцефалии следует рассмотреть вопрос о проведении наружного вентрикулярного дренирования.

Аневризмы должны подвергаться эмболизации с целью снижения риска рецидива кровотечения. Для этого во время эндоваскулярной операции в аневризму вводятся разделяемые спирали. Альтернативный метод лечения при наличии доступа к аневризме – ее клипирование или создание обходного кровотока, особенно у больных с поддающимися хирургическому удалению гематомами или с острой гидроцефалией. Если больной в сознании, то большинство сосудистых нейрохирургов предпочитают делать операцию в первые 24 ч, чтобы минимизировать риск повторного кровотечения или вазоспазма с развитием инфарктов мозга. Если после субарахноидального кровоизлияния прошло более 24 ч, то некоторые нейрохирурги часто проводят операцию спустя не менее 10 дней; это снижает риск, связанный с формированием вторичной ишемии, но увеличивает риск повторного кровотечения и увеличения общей летальности.

Осложнения и тактика ведения

  • повышение внутричерепного давления (ВЧД)
    • часто требуется ВЧД мониторинг
    • гидроцефалия - может потребоваться дренаж
  • церебральный вазоспазм
    • 3H (Гемодилюция, Гипертензия, Гиперволемия)
    • блокаторы кальциевых каналов (нимодипин)
    • эндоваскулярное вмешательство (внутриартериально введение вазодилятаторов (таких как NO) и/или баллонная ангиопластика)
  • гипонатриемия
  • коронарный спазм
  • нейрогенный отек легких

Прогноз
Прогноз значительно зависит от:

  • этиологического фактора субарахноидального кровоизлияния
  • степени субарахноидального кровоизлияния
  • наличия сопутствующей патологии

24radiology.ru

МРТ-последовательность — МР-ангиография (МРА) — 24Radiology.ru

МР-ангиография (МРА) позволяет визуализировать кровеносные сосуды даже без применения контрастного вещества.

Классификация магнитно-резонансных методов визуализации движущейся жидкости (крови или ЦСЖ)

  • времяпролетная — TOF (time-of-flight) или  T1-ангиография.
  • фазоконтрастная РС (phase contrast) или T2 ангиография.
  • MRA с контрастным усилением

Во времяпролетной МРА для построения трехмерной модели сосудов используют МИП-алгоритмы. Т1 МРА учитывают толщину перпендикулярного потоку среза и TR/TE ИП. Перспективными ИП для бесконтрастной Т1 МРА являются ИП trueFISP/FIESTA c FAT SAT.

В фазоконтрастной ангиографии (РС или Т2 МРА) фазовые изображения одного и того же среза получают дважды: первый раз с компенсацией движения (биполярный градиент), а второй раз без нее. Затем одно изображение вычитается из другого, в результате остаются МР-сигналы только от движущейся по сосудам крови, так как сигнал от неподвижной ткани на каждом изображении одинаков и вычитается полностью.

Методы фазоконтрастной МР ангиографии позволяют визуализировать течении крови в плоскости среза, картировать скорость движения крови и измерять скорость кровотока. Яркий/темный сигнал поток крови приобретает за счет фазовых эффектов, возникающих при движении протонов с потоком. К достоинствам фазовых методов следует отнести тот факт, что фазовая кодировка скорости движения производится в любом направлении, в том числе, и в плоскости среза, который может быть очень тонким (3D  РС) Фазоконтрастная МРА применима для визуализации быстрого артериального кровотока (venc=80 см/сек), медленного венозного кровотока и медленного движения ликвора (скорость движения 10-20 см/с).

В клинических условиях чаще всего используется как дополнение к времяпролетной МРА с целью отграничения неподвижных участков с высоким МР-сигналом в режиме Т1 (например, подострая гематома) и реально движущаяся кровь в сосуде.

МРА с контрастным усилением (КУ МРА) использует укорочение Т1 под действием МРКВ. Контрастное вещество вводят внутривенно, регистрацию данных начинают в момент заполнения исследуемого сосуда контрастным веществом. Для определения оптимального времени регистрации проводят предварительное болюсное введение 1-2 мл КВ (test bolus), определяя моменты начала артериальной и венозной фазы кровотока, для проведения последующих измерений на пике артериальной концентрации КВ. КУ МРА  используется для получения изображения магистральных артерий от дуги аорты до Вилизиева круга или вен интракраниальной локализации.


Источник

  • Radiopaedia
  • Диагностическая нейрорадиология — Корниенко (2009)

 

24radiology.ru

Статья Общие сведения о методе МРТ

Общие сведения

Метод медицинской диагностики - магнитно-резонансная томография (МРТ) основан на физическом явлении магнитного резонанса протонов водорода в магнитном поле в ответ на воздействие радиоволн. Высокая эффективность и абсолютная безвредность использования этого метода сделали его самым удобным и информативным на сегодняшний день в медицинской визуализации. Это позволяет использовать МРТ для разных возрастных категорий пациентов - детей, подростков, взрослых и пожилых. С помощью МРТ можно осуществлять исследования различных органов и систем, а так же косвенно или на прямую оценивать их функции.

Типы магнитно-резонансных томографов

  • Низкопольные томографы 0,2-0,5 Тесла,
  • Высокопольные томографы 1,0-3,0 Тесла,
  • Сверхвысокопольные томографы 3,0-9,0 Тесла и более.

Низкопольные томографы имеют открытый контур - т.е. представляют собой 2 крупные пластины постоянного магнита расположенные друг на против друга (сверху и снизу от пациента или справа и слева от пациента). По сути со всех сторон, кроме спереди и сзади пациент находится в открытом пространстве. Это подходит для пациентов с клаустрофобией и лишь в выраженным случаях боязни замкнутого пространства (люди которые не могут ездить в лифтах и метро) данные томографы не подходят для данных пациентов.

На данном примере сопоставления срезов пояснично-крестцового отдела позвоночника показано примерное качество снимков, сделанных на разных аппаратов с разным напряжением магнитного поля (от низкого до высокого - от 0,3 Тесла до 1,5 Тесла). Очевидно, что чем выше напряженность магнитного поля - тем лучше качество картинки. Но, не стоит впадать в заблуждение линейной зависимости "чем сильнее - тем лучше".

Всё зависит не только от напряженности магнита, но и от качества катушек, которые надевают на пациента, от софта, обрабатывающего изображения из сырых данных, настройки оборудования, поведения пациента во время исследования (важно сохранять неподвижность и дисциплинированно выполнять команды), а так же от квалификации оператора МРТ, проводящего исследование.

Высокопольные томографы имеют закрытый контур - т.е. могут иначе называться "закрытыми", представляют собой длинную трубу с открытыми концами (через которые пациент заезжает на столе внутрь и по сути находится в "замкнутом" пространстве (спереди, сзади, слева и справа везде стенки, а сверху и снизу труба томографа не закрывается - не полностью замкнутое пространство). Данные положение пациента в течении исследования 15-45 минут может быть затруднительным у больных с клаустрофобией.

Плоскости сканирования и срезы

В МРТ как и в анатомии тело человека традиционно разделено на три плоскости и три ости. На изображении ниже представлены основные плоскости и срезы, которые им соответствуют.

МРТ позволяет увидеть изменения внутренних органов человека при различных заболеваниях не контактируя с организмом и не нарушая его работы, чем всем остальные обследования в медицине на сегодня не обладают. В ходе исследования происходит получение изображения в разнообразных плоскостях, из которых наиболее часто используются продольная (сагиттальная), поперечная (аксиальная) и фронтальная (корональная).

На этом изображении (ниже) мы стараемся передать вам принцип расположения срезов друг к другу.

Сканирование начинается всегда с расположения пациента в томографе и после этого томограф проводит ряд прицельных срезов низкого качества. Это так называемый прицельный снимок или localizer. Многие специалисты (врачи не МРТ) ошибочно воспринимают их как ВСЁ исследование целиком и думают что это МРТ плохого качества, хотя это в очередной раз доказывает сложность работы врача и оператора МРТ и отражает пренебрежительное и поверхностное отношение к работе врачей-рентгенологов.

После проведения прицельного (разметочного или рекогносцировочного) сканирования осуществляется выставление плоскостей срезов, с соблюдением строгих анатомических ориентиров по традиционным осям. Срезы выставляются в определенном числе со специально заданными параметрами. Число срезов и их направления не у всех одинаковое и зависит от выявляемых патологических изменений в организме, порой находимых прямо непосредственно в ходе проведения данного исследования. Это не позволяет полностью стандартизировать исследование одно для всех. При этом различное число срезов и дополнительные программы ведут к увеличению время сканирования, что так же должно адекватно осознаваться пациентом, врачом и другими пациентами ожидающими свою очередь.

После проведения сканирования получаются срезы в трёх плоскостях.

Рабочая станция оператора МРТ достаточно сложный инструмент с массой настраиваемых параметров для достижения оптимального результата визуализации. В таком большом количестве параметров используются время TE, время релаксации ядер водорода TR, матрица, толщина среза, направление срезов, уровень взвешенности, поле обзора FOV, число срезов и многие другие. Большинство врачей, которые не разу не работали на МРТ не представляют себе сложности выполнения исследования, а почти все пациенты считают, что исследование проводится нажатием одной кнопки. А рекомендации лечащего врача о "толщине среза в 1 мм" кажутся просто анекдотическими, когда следует просто принять во внимание задачи становящиеся перед данным исследование, спланировать много данных, лишь одно из которых составляет толщину среза и совершенно не является решающим для получения оптимального изображения. Кто бы не столкнулся с этой статьёй - имейте в виду, что врач МРТ и оператор МРТ профессионалы, знают свою работу гораздо лучше, чем поверхностные представления многие из врачей, обременённых учеными степенями и иными регалиями (будьте скромны и уважайте труд рентгенологов - это прибавит вам уважения со стороны диагностического отделения).

Импульсные последовательности

МРТ использует разные режимы визуализации, из которых наиболее часто используются: Т1, Т2, Flair, Stir. Эти режимы позволяют увидеть ткани и жидкости организма обладающие разными физическими свойствами в зависимости о содержания в них воды: кровь, жир, мягкие ткани и т.д.

В режиме Т1 - жидкость темная, а жир светлый, в режиме Т2 - жир и жидкость светлые, в режиме Stir – вода светлая, а жир темный. Flair - используется для изучения вещества головного мозга.

Основные отличия МРТ от КТ

МРТ и КТ используют принципиально различные физические основы для получения данных изображения. МРТ использует магнтиное поле и радиоволны (безвредно для человека), а КТ использует рентгеновские лучи (в процессе проведения КТ происходит облучение организма, однако в небольшой дозе и при частом использовании может быть вредным для человека).

Преимущества МРТ:

  • хорошая тканевая контрастность мягких тканей (хорошо видны структуры мягких тканей, или структуры, содержащие жидкость: внутренние органы брюшной полости, малого таза, мозг, мышцы, связки, мениски),
  • безвредность для организма (можно делать сколь угодно долго и часто),
  • позволяет увидеть кровоток в сосудах (артериях и венах) мозга без контраста (!),
  • позволяет проводить функциональные исследования: функциональное МРТ, спектроскопия, безконтрастаня перфузия.

Преимущества КТ:

  • хорошая тканевая контрастность плотных тканей (хорошо видны костные структуры, патологические изменения костей и лёгочная ткань),
  • быстрота исследования (практически любое исследование на КТ идёт не более 1 минуты),
  • практически полное отсутствие противопоказаний к исследованию (исследование может пройти любой больной),
  • нет закрытого пространства (стол проезжает через узкую раму томографа, нет трубы или тоннеля).
  • КТ перфузия имеет большее разрешение и скорость проведения, чем на МРТ.

Лучше всего продемонстрировать отличие МРТ от КТ на примере сопоставления снимком пояснично-крестцового отдела позвоночника на МРТ (верхняя строчка - в режиме Т2, Т1 и STIR) и нижняя строчка КТ в режиме мягкотканного окна, костного окна и в формате SSD).

Метод 3D-реконструкции тонких срезов на МРТ позволяет визуализировать трехмерные изображения артерий и вен, а так же других некоторых анатомических областей, а на КТ пространственные реконструкции скелета очень хорошо используются при планировании нейрохирургических и ортопедических операциях.

Демонстративный пример различия 2х методов (КТ и МРТ), проведенных одному и тому же пациенту с крупной опухолью в крестце. На МРТ хорошо видна структура собственно опухолевого конгломерата (можно оценить структуру опухоли, однородность, наличие кист или некроза, а так же увидеть её границы). На КТ можно оценить сохранность костной ткани или узнать структуру кости в толще опухолевого мягкотканного конгломерата (обрастает ли опухоль кость или внедряется в кость, разрушает ли кость или приводит к её патологическому уплотнению, а так же оценить степень разрушения костно ткани).

В данном примере пациент с компрессионным переломом тела позвонка. МРТ визуализирует контур кости и может выявить отёк костного мозга в позвонке (то есть сделать вывод о свежем или старом переломе). КТ хорошо демонстрирует структуру костно ткани самого позвонка, наличие костных отломков, их число, размеры, смещение, в особенности что важно в отношении заднего опорного комплекса позвонка (суставных отростки, дужки, ножки позвонка), что крайне важно для планирования ведения данного пациента (консервативное или операционное), а так же в планировании оперативного лечения или использовании самого исследования во время операции (навигация).

Матрица и толщина среза

Срез (скан) на МРТ представляет собой не просто плоское изображение на экране. Срез имеет некоторые особенности, которые характеризуют качество картинки на нём.

Срез имеет два основных параметра: матрица (количество пикселей - маленьких точек или квадратиков в плоскости, каждая из которых имеют высоту и ширину в координатной сетке по оси x и оси y) и толщина среза (то есть к оси X и Y добавляется толщина слоя или третье измерение - высота = Z в пространственной координатной клетке).

На сопровождающейся картинке демонстрируется отличие просто пикселя (точки - мельчайшего элемента изображения в координатной сетке среза), от так параллелепипеда - вокселя (кубика - мельчашего элемента изображения в пространственной координатной клетке) с учётом толщины среза.

Матрица может быть вытянутая (одна из сторон шире или уже другой) или квадратной (сторона А = стороне В или ширина по ости X равна ширине по оси Y). Если используется квадратная матрица, а ширина среза превышает значение матрица - можно говорить об анизотропном вокселе (то есть параллелепипеде). Если используется квадратная матрица, и ширина среза равна значению матрицы - следует говорить об изотропном вокселе (то есть кубе). Это в дальнейшем может повлиять на внешнем виде реформатов, то есть использовании срезов для построения срезов в других плоскостях, используя только срезы в одной плоскости для визуализации данной анатомической области в других ракурсах (в плоскостях других срезов - например когда есть только поперечные срезы, а мы с помощью компьютерной обработки желаем построить из них продольный срез).

В медицинских кругах и среди пациентов есть расхожее мнение о том, что, чем ТОНЬШЕ срез ЛУЧШЕ качество диагностики. Очень частым аргументом в пользу этого мнения служит представление о том что мелкое образование может быть пропущено, когда оно попадает в зазор между срезами или на край толстого среза, в результате чего оно оказывается пропущенным, а в итоге из него может развиться раковая опухоль.

В действительности эта точка зрения весьма поверхностна, хотя и не лишена логики всё же не является справедливой.

В большинстве случаев в повседневной работе на МРТ используется срез с толщиной от 3 до 5 мм. В подавляющем большинстве случаев такая толщина среза оказывается достаточной для успешной диагностики почти всех патологических процессов. В данном случае ожидать наличия некого образования тоньше 5мм, которые не попадёт в срез практически исключено, так как срезы проходят в 3х плоскостях и данный мелкий очажок должен быть очень ловким, что бы избежать попадания во все три плоскости сканирования, каждая из которых осуществляет нарезку в 3х плоскостях. Таким образом, такой очаг должен быть в 3 раза тоньше 5мм что бы исключительно по теории вероятности не попасть ни разу в плоскость сканирования. Но вся проблема в его диагностики даже не в том, что он не попадёт в срез, а совершенно в другом. В данном случае следует сделать отступление и сказать, о том что именно внешний вид (морфология) на МРТ позволяет отнести одно образование к одной группе патологических процессов, а другое к другой. Внешний вид образования размерами от 5мм и менее имеет вид одной точки на картинке. В этом смысле даже в случае нахождения "не ясной точки" в органе совершенно не означает наличие раковой опухоли в начальной стадии, а большей степени является помехой, ошибкой обсчёта изображения(артефактом) или мелкой нормальной анатомической структурой (сосуд, нерв) или анатомической особенностью его строения или ещё чем-то, что уже выходит за пределы диагностической эффективности метода. Практически в любом исследовании любого пациента можно найти очаг более 5мм, который затруднительно толковать как нечто конкретное и иметь 100% обоснования для своей точки зрения. И тонкий срез совершенно не решает этих задач.

При всём выше сказанном тонкий срез добавляет проблем для картинки как видно на представленных срезах. Тонкий срез следует использовать в исключительных случаях, которые известны врачу рентгенологу с применением специально настроенных программ, которые сделаны для конкретных анатомических областей и настроены на решение конкретных медицинских диагностических задач. Например тонкий срез для изучения отдельных нервов на цистернографии (импульсная последовательность практически бинарного черно-белого цвета, позволяющая лишь контурно видеть органы на границе фаз жидкость/мягкая ткань) или использовать тонкие срезы для планирования стереотаксической радиохирургии (гамма-нож).

Противопоказания к проведению МРТ

МРТ является безвредным и широко используемым диагностическим методом, но, тем не менее имеет ограничения, которые делятся на абсолютные (исследование не допустимо!) и относительные (исследование нежелательно, но возможно при клинической незаменимости и важности для жизни пациента).

Абсолютные противопоказания

  1. установленный кардиостимулятор (изменения магнитного поля могут изменять его работу и нарушать сердечный ритм, что создаёт угрозу сердечного ритма и сократимости миокарда) - МРТ ИССЛЕДОВАНИЕ НЕДОПУСТИМО по жизненным показаниям!
  2. ферромагнитные или электронные имплантаты среднего уха (риск повреждения внутреннего уха или поломка самого аппарата),
  3. большие металлические имплантаты и осколки (инородные тела не ясной природы, возможно металлические),
  4. магнитные металлические тела, имплантаты: аппарат Илизарова или эндопротезы (в области исследования приводят к отсутствию визуализации, если данные инородные тела не в области исследования процедура допустима в большинстве случаев),
  5. клипсы, стенты и кава-фильтры брюшной полости (риск развития внутреннего кровотечения),
  6. внутренние инъекторы инсулина (может быть повреждение микросхем или батареек),
  7. масса тела более 150 кг (в некоторых случаях 120-130 кг уже недопустимо),
  8. иная причина, заставляющая медицинский персонал считать, что исследование будет опаснее болезни или создавать угрозой жизни пациента (в таких случаях требуется собирать консилиум или требовать у родственников/самого пациента/опекуна информированного согласия о проведении исследования).

Относительные противопоказания

  1. клаустрофобия,
  2. эпилепсия,
  3. беременность (в особенности первый триместр),
  4. крайне тяжелое состояние больного,
  5. невозможность для пациента сохранять неподвижность во время обследования.

Артефакты на МРТ

Артефакты на МРТ - это изменения на снимках, которые нарушают или затрудняют визуализацию, а так же симулируют наличие не существующих изменений или маскируют изменения, имеющие место быть в действительности, но в силу данных помех не видимые на снимке.

Артефакты бывают совершенно разнообразные, зависящие от работы аппарата, наличия инородного материала в области исследования или физологических особенностей пациента, но тем не менее все они подразделяются на группы по причине или проявлению.

Артефакт наложения вызван неправильным планированием срезов - ошибка оператора МРТ, исправляется увеличением поля обзора и зависит от опыта медицинского персонала, а так же от настройки аппарата поставщиком оборудования.

Артефакт неоднородности магнитного поля - вызван наличием металлических предметов в непосредственной близости от области исследования. Так в данном случае из-за брекетов на зубах возникает ложное изображение кровоизлияния в бороздах у основания лобной доли. Данные артефакты не вызывают недоумения у специалистов - врачей МРТ, но могут смущать лечащего врача, который не имеет представления о возможных искажениях, вызванных железом, расположенным рядом с зоной исследования.

Артефакт от металла - тот же артефакт как и от неоднородности поля, но в зоне исследования он способен скрывать целую анатомическую область, не затрудняя диагностику, а делая её полностью невозможной. В то время как обычная рентгенография отлично демонстрирует расположение эндопротеза коленного сустава относительно большеберцовой и бедренной кости.

Артефакт от движения. Во время прохождения МРТ важно сохранять неподвижность в течении всей процедуры сканирования. Иначе на картинке появляются элементы динамической не резкости и размытости, что иногда затрудняет диагностику, а иногда делает её полностью не возможной.

Артефакт потока. В организме человека всё время движется не только кровь и сердце, но её и спинномозговая жидкость в полости черепа и позвоночном канале. При МРТ позвоночника в грудном отделе часто встречаются участки "выпадения сигнала" обусловленные потоковым движением спинномозговой жидкости, что у делитантов создаёт ложное впечатление о наличии дополнительных образований в позвоночном канале, которых на самом деле нет.

Иногда артефакты потока в норме отсутствуют и возникают при появлении турбулентности (завихрении) движения. Например когда потоку спинномозговой жидкости препятствует киста в позвоночном канале, не видная на обычных томограммах, но очевидная по наличию завихрений потока на её краях и небольшому смещению спинного мозга.

Контрастное усиление

При необходимости по ходу исследования врач может рекомендовать пациенту контрастное усиление.

Контрастное усиление - это внутривенное введение специального, не опасного для здоровья, препарата, который избирательно накапливается в большем количестве в изменённых тканях в разных пропорциях и объёмах в зависимости от типового патологического процесса и его фазы течения. Это помогает врачу определить характер заболевания.

Для чего используется контрастное усиление:

  • дифференциальная диагностика (для уточнения характера выявленных изменений),
  • уточнения границ образования (распространенности патологического процесса и точного определения его границ),
  • для уточнения числа и размеров метастазов, например в мозге или печени,
  • для планирования стереотаксической радиохирургии,
  • для оценки рецидива или продолженного роста опухоли после её удаления или облучения,
  • для оценки фазы активности воспалительно-демиелинизирующего процесса (рассеянный склероз),
  • МРТ артерий и вен головного мозга не требует введения контраста (на основе физических изменений, формируемых движением потока крови в сосудах на МРТ строится картина в режиме Time-Of-Fly или Phase-contrast).

Иногда у пациентов возникают сомнения в необходимости контрастного усиления. Что в общем-то естественно, но не рационально. Контраст используется не в качестве дополнительной "услуги", которую врач добавляет в обследование для увеличения ценника, а является важным инструментом повышения диагностической эффективности метода МРТ. С контрастом можно сказать гораздо больше о выявленном неизвестном или сомнительном патологическом процесса, а иногда сделать исчерпывающие выводы. Таким образом, если врач рекомендует проведение МРТ с контрастом - не следует возражать. Однако, не стоит самостоятельно, без рекомендации специалиста настаивать на проведении МРТ с контрастом, так как в большинстве случаем его использование не оправдано. Так же не стоит рассчитывать, что контраст выявит ВСЁ что есть, могло бы быть или с контрастом изображение станет безупречным. Контраст лишь добавляет необходимой информации, которая порой может быть противоречивой и результаты исследования с контрастом лишь добавляют информации врачу для формирования выводов, а не делаю исследование абсолютно достоверным и решающим все клинические вопросы.

На данном примере хорошо видно как выглядит доброкачественная опухоль нервного корешка в позвоночном канале на исследлвании без контраста (нативном МРТ) и после введения контраста (опухоль интенсивно и однородно накапливает контраста, становится яркой).

Контрастный препарат представляет собой гипоаллергенное средство, так как оно является не ионным гипоосмолярным хелатным комплексом щелочноземельного метала гадолиния. На сегодняшний день на рынке много коммерческих названий контрастных препаратов, например в МРТ используются парамагнетики: Магневист, Примовист.

Способа введения контраста в МРТ обычно 2: внутривенно струйно (обычный внутривенный укол) и динамическое контрастирование (используется быстрое введение контраста в ходе сканирования (оператором МРТ через катетер или с помощью специального аппарата - инъектора).

Обычно используется введение контраста из расчёта 0,1мл на 10кг массы тела пациента. Обычно вводится от 10 до 20мл контраста.

Другой пример демонстрации использования контраста на МРТ, где слева направо показано как выглядит на МРТ невринома позвоночном канале с контрастом: 1 на тонком срезе (изображение не выглядит самым лучшим - это возвращает нас к вопросу о ложном впечатлении необходимости "тонкого среза"), 2 на обычном МРТ в режиме Т1 и 3 на МРТ в режиме Т1 с вычитанием жировой ткани (режим Fat Saturation) - который приводит к наилучшей визуализации структуры и границ опухоли в позвоночном канале.

Автор статьи: врач-рентгенолог, к.м.н. Власов Евгений Александрович


rentgenogram.com

Анализ крови на креатинин для компьютерной томографии (КТ) с контрастом

КТ-обследования внутренних органов, сосудов распространены. Метод позволяет на ранних сроках выявлять небольшие патологические образования, но сопровождается радиацинным облучением. Для предотвращения осложнений разработаны медицинские критерии исследования. Вероятность побочных эффектов возрастает после применения контраста. Внутривенное введение йода провоцирует аллергию, обостряет почечную недостаточность.

Что такое компьютерная томография с контрастом

Под КТ головного мозга с контрастом понимается специальная методика обследования при помощи послойного сканирования рентгеновским излучением. Благодаря КТ с контрастом удается получить максимально точное моделирование внутренней структуры тела в трехмерном пространстве после заполнения усиливающим веществом сосудов. Врач изучает состояние тканей, сосудов, органов как отдельно и целиком (после программной реконструкции). Обследование более специфично, информативно если сравнивать с рентгенографией.

Применение метода дает возможность отследить микроциркуляцию, визуализировать мягкие ткани, которые во время нативного сканирования не прослеживаются. Для снижения вероятности осложнений после томографии перед процедурой врач анализирует амбулаторную карту, изучает анализы, выясняет есть ли аллергия на йод, исключает противопоказания (сахарный диабет, бронхиальную астму).

Без провокационной пробы для здоровья опасна КТ мозга с контрастом, так как обследование может спровоцировать смертельные состояния (анафилактический шок, отек Квинке). 

Не используется контраст при инфаркте миокарда, недостаточности печени, почек. Показания для исследования устанавливаются для каждого пациента индивидуально для снижения риска осложнений.

Перед контрастным сканированием потребуются биохимические анализы крови на:

  • АЛТ;
  • Креатинин;
  • Мочевину;
  • АСТ.

После получения результатов планирует вид, режим исследования - КТ с контрастным веществом или нативный аналог.

Особенности анализа крови на креатинин перед компьютерной томографией

Анализ назначается для оценки функции почек, мышечной системы. Важность изучения показателя заключается в выявлении его уровня. Концентрация соединения в крови напрямую зависит от степени повреждения почечной фильтрации. Креатин, вместе с другими органическими соединениями, составляет молекулу остаточного азота, образующего после переваривания белков. Как все небелковые части выводится через почки. Другие химические вещества, отражающие работу почек:

  • Мочевина;
  • Аммиак;
  • Мочевая кислота.

По их уровню определяется, насколько правильно протекает процесс мочевыделения. Что показывает можно ли проводить компьютерную томографию с использованием контраста и не возникнут ли осложнения у пациента.

Сколько годен анализ на креатинин для КТ

При оценке функций почек берется за основу баланс между выработкой и выведением креатинина организмом. У здорового человека большая часть соединения выводится мочой, не происходит обратного всасывания. Физиологически с уриной удаляется 90% креатинина, прошедшего фильтацию через клубочки нефрона, остальные 10% не всасываясь секретируются канальцами.

Для проведения КТ с контрастом важно состояние почек. Малейшее отклонение от нормы усиливает вероятность побочных эффектов после введения йода. Определяется возможность компьютерного сканирования у пациентов с почечными болезнями по "свежему" анализу (за 1-2 дня до исследования). Уровень креатинина мочи и крови позволит определить, можно ли проводить КТ с использованием контраста или лучше отложить до улучшения состояния.

Насколько эффективно контрастирование при КТ

Когда проводится контрастирование:

Медицинское применение МСКТ головного мозга позволило осуществить прорыв в области исследований костей, мозга. Что не удивительно, ведь все изображения отличаются четкостью и высоким качеством. Использование контраста позволяет увеличить видимость тканей после облучения рентгеновскими лучами. Применение контрастного вещества оказывает, на организм пациента нейтральное воздействие. Препарат не вступает в метаболические реакции.

  • При компьютерной томографии легких, контраст улучшает отображение на снимке бронхов, легочной паренхимы;
  • При изучении структуры печени контрастное вещество позволяет увидеть кисты, различные виды опухолей, воспалений;
  • Если необходимо на визуальном уровне отделить петли кишечника от всех расположенных рядом органов;
  • При диагностике состояния сосудов.

Введение контрастного раствора может осуществляться следующими способами:

  1. Пероральный – пациент должен будет принять препарат внутрь специальный йодистый раствор. Способ особенно эффективен во время изучения желудка и ЖКТ. Особенность метода заключается в том, что контрастные частицы быстро всасываются. Действие, позволяет не только увеличить качество, но и четкость полученных изображений органов, различных тканей.
  2. Внутривенный – может проводиться как в ручном режиме, так и болюсным способом.

Внутривенный способ является эффективным для исследований внутренних органов и кровеносных сосудов, так как, попадая в кровь, быстро впитывается, четко выделяя ткани и сосуды. При ручном контрастировании, следует учитывать невозможность четко регулировать с какой скоростью будут поступать вещества в организм.

Обследование проводится на аппаратах первого поколения, что ограничивает диагностические возможности метода. В отличие от ручного, болюсное введение осуществляется специальным шприцом, которым оснащен аппарат. Раствор подается по заранее установленной программой скоростью. Особенность метода позволяет аппарату несколько раз проводить сканирование заданной области через определенные промежутки. Каждый снимок будет отображать изменение изображения органов по мере распределения йодистого раствора. Процедура длится 40-45 минут. Не учитывается время введения или перорального приема контрастного вещества.  

До проведения обследования следует объяснить пациенту важность сохранения неподвижного положения. Иногда потребуется задержка дыхания, о чем нужно предупредить дополнительно. Соблюдение правил предоставляет возможность получить качественные снимки, сформировать правильное заключение!

При отсутствии заболевания почек перед КТ-обследованием не нужно сдавать анализ на креатинин, так как вероятность побочных эффектов сводится к минимуму. 

mrt-kt-golovnogo-mozga.ru


Смотрите также

© Copyright Tomo-tomo.ru
Карта сайта, XML.

Приём ведут профессора, доценты и ассистенты

кафедры лучевой диагностики и новых медицинских технологий

Института повышения квалификации ФМБА России