|
Записаться
|
Шкала хаунсфилда при компьютерной томографииШкала ХаунсфилдаШкала Хаунсфилда (по-английски - Hounsfield) — количественная шкала рентгеновской плотности (радиоденсивности). ОпределениеШкала единиц Хаунсфилда (денситометрических показателей, англ. HU) — шкала линейного ослабления излучения по отношению к дистиллированной воде, рентгеновская плотность которой была принята за 0 HU (при стандартных давлении и температуре). Для материала X с линейным коэффициентом ослабления μX , величина HU определяется по формуле $${\mu_X - \mu_{water} \over \mu_{water} - \mu_{air}} \times 1000 $$ где μwater и μair — линейные коэффициенты ослабления для воды и воздуха при стандартных условиях. Таким образом, одна единица Хаунсфилда соответствует 0,1 % разницы в ослаблении излучения между водой и воздухом, или приблизительно 0,1 % коэффициента ослабления воды, так как коэффициент ослабления воздуха практически равен нулю. Стандарты, указанные выше, были выбраны для практического применения в компьютерной томографии живых организмов (в том числе человека), т.к. их анатомические структуры в значительной степени состоят из связанной воды. Средние денситометрические показатели
ИсторияШкала была предложена сэром Годфри Ньюболдом Хаунсфилдом, одним из главных инженеров и разработчиков аксиальной компьютерной томографии. КТ-аппараты стали первыми устройствами, позволяющими детально визуализировать анатомию живых существ в трехмерном виде. С начала 1990-х годов развитие компьютерной технологии позволило разработать 3D-реконструирующее программное обеспечение. Для сравнения, обычные рентгеновские изображения отражают лишь проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень. www.andreyolegovich.ru Числа Хаунсфилда | Компью́терная томогра́фияИсходя из представленной формулы, число Хаунсфилда для воды составляет О HU, а для воздуха равно -1000 HU. Верхняя граница чисел Хаунсфилда вариабельна. Она определяется возможностями аппарата, прежде всего системы регистрации ослабленного излучения. В современных аппаратах диапазон чисел Хаунсфилда достигает 4096 HU. Это означает, что с помощью КТ теоретически возможно различить анатомические структуры, различающиеся по степени поглощения рентгеновского излучения на 0,024% (1/4096x100% = 0,024%). Контрастное разрешение определяется как возможность различать объекты изображения, имеющие близкую оптическую плотность. Относительно высокая контрастная разрешающая способность КТ позволяет визуализировать объекты, которые на обзорных рентгенограммах и томограммах не получают самостоятельного отображения. Примером могут служить анатомические структуры средостения (перикард, камеры сердца, крупные сосуды), грудной клетки (мышцы, сосуды, лимфатические узлы), органы и ткани поддиафрагмального пространства. Совокупность чисел Хаунсфилда составляет шкалу Хаунсфилда. Как уже было показано, нулевое значение числа Хаунсфилда соответствует коэффициенту ослабления рентгеновского излучения воды в нормальных условиях. Нижней границей шкалы является числовое значение коэффициента ослабления рентгеновского излучения воздухом и равно -1000 HU. Наибольшие значения коэффициентов ослабления регистрируются в пирамидах височной кости. Значения относительной плотности для большинства паренхиматозных органов составляют +30...+70 HU, крови в сосудах и камерах сердца — в пределах +40...+45 HU. Относительная плотность жировых тканей меньше плотности воды и колеблется от -30 HU до -120 HU. Теоретически числа Хаунсфилда должны быть прямо пропорциональны коэффициентам ослабления. Однако правильность измерений сильно страдает от неточностей и несоответствий, вызываемых разнообразными артефактами. Кроме того, вычисленные коэффициенты ослабления существенно зависят от типа компьютерно-томографической установки, выбранных физико-технических условий сканирования, прежде всего величины напряжения генерирования излучения и экспозиции, многих других параметров. Поэтому для диагностических целей числа Хаунсфилда необходимо использовать с осторожностью. Практическое значение имеют не столько абсолютные значения чисел Хаунсфилда, сколько возможность разграничить изучаемые объекты на однородные и неоднородные, а также выявить в них наличие мягкотканных структур, жировых включений, жидкости или обызвествлений. Возможность не только визуально изучать исследуемый объект, но и проводить прямой денси-тометрический анализ с измерением коэффициентов ослабления в единицах Хаунсфилда является существенным преимуществом КТ по сравнению с обычным рентгенологическим исследованием. При анализе рентгеновских снимков денситометрия также возможна, однако она является непрямой, опосредованной. Она основана на сопоставлении степени почернения рентгеновской пленки интересующей области и выбранного эталона, например, алюминиевого клина. В КТ осуществляется прямая денситометрия в виде измерения и сопоставления коэффициентов линейного ослабления изучаемых структур. Это существенно повышает объективность исследования в сравнении с обычной рентгенографией и другими методами лучевой диагностики. kievoncology.com Шкала Хаунсфилда ВикипедияШкала Хаунсфилда — количественная шкала рентгеновской плотности (радиоденсивности). ОпределениеШкала единиц Хаунсфилда (денситометрических показателей, англ. HU) — шкала линейного ослабления излучения по отношению к дистиллированной воде, рентгеновская плотность которой была принята за 0 HU (при стандартных давлении и температуре). Для материала X с линейным коэффициентом ослабления μX{\displaystyle \mu _{X}}, величина HU определяется по формуле μX−μwaterμwater−μair×1000{\displaystyle {\frac {\mu _{X}-\mu _{water}}{\mu _{water}-\mu _{air}}}\times 1000} где μwater{\displaystyle \mu _{water}} и μair{\displaystyle \mu _{air}} — линейные коэффициенты ослабления для воды и воздуха при стандартных условиях. Таким образом, одна единица Хаунсфилда соответствует 0,1 % разницы в ослаблении излучения между водой и воздухом, или приблизительно 0,1 % коэффициента ослабления воды, так как коэффициент ослабления воздуха практически равен нулю. Стандарты, указанные выше, были выбраны для практического применения в компьютерной томографии живых организмов (в том числе человека), т.к. их анатомические структуры в значительной степени состоят из связанной воды. Средние денситометрические показатели
ИсторияШкала была предложена сэром Годфри Ньюболдом Хаунсфилдом, одним из главных инженеров и разработчиков аксиальной компьютерной томографии. КТ-аппараты стали первыми устройствами, позволяющими детально визуализировать анатомию живых существ в трехмерном виде. С начала 1990-х годов развитие компьютерной технологии позволило разработать 3D-реконструирующее программное обеспечение. Для сравнения, обычные рентгеновские изображения отражают лишь проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень.
wikiredia.ru КТ - ВикипедияМатериал из Википедии — свободной энциклопедии (перенаправлено с «»)Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 октября 2018; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 октября 2018; проверки требуют 4 правки. ![]() Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения. Появление компьютерных томографов[ | ]Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии. В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик Г. Хаунсфилд из фирмы «EMI Ltd.» сконструировал «ЭМИ-сканер» — первый компьютерный рентгеновский томограф, клинические испытания которого прошли в 1971 году, — разработанный только для сканирования головы. Средства на разработку КТ были выделены фирмой EMI, в частности, благодаря высоким доходам, полученным от контракта с группой The Beatles[1]. В 1979 году «за разработку компьютерной томографии» Кормак и Хаунсфилд были удостоены Нобелевской премии по физиологии и медицине. Предпосылки метода в истории медицины[ | ]Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения encyclopaedia.bid Компьютерная томограмма ВикипедияЗапрос «КТ» перенаправляет сюда; см. также другие значения.![]() Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения. Содержание
Появление компьютерных томографов[ | ]Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии. В 1963 году американский физик А. Кормак повторно (но отличным от Радона способом) решил задачу томографического восстановления, а в 1969 году английский инженер-физик ru-wiki.ru Компьютерный томограф ВикипедияЗапрос «КТ» перенаправляет сюда; см. также другие значения.![]() Компью́терная томогра́фия — метод неразрушающего послойного исследования внутреннего строения предмета, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком, удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями. В настоящее время рентгеновская компьютерная томография является основным томографическим методом исследования внутренних органов человека с использованием рентгеновского излучения. Содержание
Появление компьютерных томографов[ | ]Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения, который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии. В 1963 году американский физик А. Кормак пов ru-wiki.ru
|